

BILKENT UNIVERSITY

CS492 - Senior Design Project II

Detailed Design Report

T2423 - Evalio

Eren Hayrettin Arım 22002306

Ahmet Reşat Demir 22002299

Mehmet Burak Demirel 22003396

Dilara Mandıracı 22101643

Yusuf Toraman 22002885

TABLE OF CONTENTS
TABLE OF CONTENTS...2
1. Introduction.. 4

1.1 Purpose of the system..4
1.2 Design Goals..6

1.2.1 User Friendliness / Usability..6
1.2.2 Maintainability...6
1.2.3 Reliability... 6
1.2.4 Security... 7

1.3 Definitions, Acronyms, and Abbreviations..7
1.3.1 Definitions..7
1.3.2 Acronyms and Abbreviations...8

1.4 Overview.. 8
2. Current software architecture...9

2.1 Evalio Current Architecture.. 9
2.2 Competitors, Alternative and Current Solutions... 10

3. Proposed software architecture... 12
3.1 Overview.. 12
3.2 Subsystem Decomposition...14
3.3 Hardware/Software Mapping..14
3.4 Persistent Data Management...15
3.5 Access Control and Security.. 15

4. Subsystem Services.. 17
4.1 Client Subsystem... 17

4.1.1 Student View... 17
4.1.2 Instructor View...17
4.1.3 Teaching Assistant (TA) View.. 18
4.1.4 Institution View.. 18
4.1.5 Admin View..18
4.1.6 Authentication View...18

4.2 Gateway Subsystem.. 18
4.3 Logic Subsystem.. 19

4.3.1 Exam & Solution Builder Service...20
4.3.2 Question Service... 20
4.3.3 Authentication (Auth) Service..20
4.3.4 Portfolio Service.. 20
4.3.5 Objection Service.. 20
4.3.6 Interservice Communication Service...21

4.4 External Services Subsystem...21
4.5 Data Management Subsystem...22
4.6 AWS Subsystem.. 22

5. Test Cases...23
5.1 Functional Test Cases.. 23

2

5.1.1 Authentication Test Cases...23
5.1.2 Question Database Test Cases...26
5.1.3 LaTeX Service Test Cases.. 29
5.1.4 Exam Creation Test Cases..32
5.1.5 Slot Test Cases... 34
5.1.6 Portfolio Builder Test Cases.. 40

5.2 Non-Functional Test Cases.. 46
6. Consideration of Various Factors in Engineering Design..49

6.1 Constraints... 49
6.1.1 Implementation Constraints...49

6.1.1.1 Authentication...49
6.1.1.2 Data Access... 49
6.1.1.3 Question Scanning... 49

6.1.2 Economic Constraints... 49
6.1.2.1 Cloud Service... 49
6.1.2.2 Advertisement...50

6.1.3 Time Constraint... 50
6.1.4 Professional and Ethical Issues.. 50

6.2 Standards... 50
6.2.1 Modeling Standards.. 50
6.2.2 Requirements Documentation...51
6.2.3 Security Standards.. 51

7. Teamwork Details...51
7.1 Ensuring Coordination and Efficient Workflow in the Project..................................... 51
7.2 Contributing and functioning effectively on the team..52
7.3 Helping creating a collaborative and inclusive environment.......................................52
7.4 Taking lead role and sharing leadership on the team...53

8. Glossary..54
9. References..56

3

1. Introduction
Even if the traditional paper-based exam method is widely used, it often falls

short of accurately measuring student success and meeting modern educational

needs. Research from Purdue University shows the importance of mapping and

analyzing questions during the exam preparation phase to enhance exam quality

and performance [1]. In response, our team aims to develop Evalio, an advanced

exam database and management application designed to streamline exam creation

and improve assessment effectiveness. Evalio enables instructors to create

practical, high-quality exams through a shared, searchable question database that

supports multiple courses. With features like question usage tracking, editing,

versioning, export options, and detailed performance analytics, Evalio helps create

balanced assessments while managing assignments and exams. Additionally, it

offers secure, multi-university collaboration. It ultimately contributes to improved

teaching and learning outcomes.

1.1 Purpose of the system

Traditional exam preparation and evaluation methods often present significant

challenges for educators and academic institutions. Managing large question banks,

ensuring balanced assessments, analyzing student performance, and organizing

exam result review sessions require extensive effort and time. Additionally,

accreditation processes necessitate structured documentation of academic

materials, further increasing the administrative workload for instructors. To address

these challenges, Evalio is designed as a comprehensive, scalable, and secure

platform that streamlines exam creation, question management, performance

analysis, and academic portfolio organization for universities and educational

institutions.

The primary objective of Evalio is to facilitate efficient exam preparation by

providing instructors with a structured, searchable question database. The platform

enables users to create, store, and manage a vast collection of categorized

questions with tagging, classification, and version control. Instructors can manually

select questions or use automated exam generation based on predefined criteria

4

such as topic distribution and difficulty levels. Furthermore, the Exam Builder feature

supports multiple export formats, including LaTeX, PDF, and Google Docs, ensuring

seamless integration with academic workflows.

Beyond exam creation, Evalio provides advanced data analytics to enhance

performance evaluation. The platform allows institutions to analyze success rates

per question, exam difficulty trends, and correlations between student performance

and attendance. By leveraging real-time data visualization tools such as graphs and

statistical reports, instructors can make informed decisions to improve the quality of

assessments. Additionally, Evalio supports accreditation efforts by generating

compliance reports aligning with ABET and MÜDEK standards, ensuring educational

programs meet regulatory requirements.

Another key aspect of Evalio is its ability to streamline post-exam result

viewing and objection handling. Teaching assistants can efficiently organize exam

result viewing sessions by creating structured time slots for students to review their

graded exams. Students can book available slots on a first-come, first-served basis

through the system, ensuring fairness and transparency. Additionally, Evalio

facilitates structured objection handling, allowing students to submit concerns

securely while instructors and TAs can efficiently review, manage, and resolve

disputes.

In addition to exam management, Evalio serves as a comprehensive portfolio

management system. Educators can create and maintain detailed course portfolios

that include exam samples, grading records, attendance sheets, and accreditation

documentation. The system automates the generation of structured PDF portfolios,

reducing manual effort while ensuring compliance with institutional and accreditation

requirements.

Security and scalability are fundamental to Evalio’s design. The system

implements Role-Based Access Control (RBAC) to restrict access based on user

roles, ensuring that only authorized instructors and teaching assistants can access

sensitive data. User authentication is reinforced through institutional verification,

preventing unauthorized users from registering. The platform’s microservices-based

5

architecture ensures modularity, allowing independent updates to various system

components without disrupting overall functionality.

By integrating question management, exam building, performance analysis,

result viewing, and portfolio creation into a single platform, Evalio aims to

significantly enhance efficiency, improve assessment quality, and support

inter-university collaboration. The system reduces the administrative burden on

educators, ensuring they can focus on delivering high-quality education while

maintaining academic integrity and compliance with accreditation standards.

1.2 Design Goals

Evalio is designed to be a comprehensive, efficient, and scalable platform that

addresses the needs of instructors, teaching assistants, and academic institutions.

The system's architecture and functionality are developed with key design goals to

ensure usability, security, maintainability, and overall system effectiveness. Below

are the primary design goals that guide the development of Evalio:

1.2.1 User Friendliness / Usability

Evalio aims to be user-friendly with its easy and understandable interface

designed to facilitate users while creating exams by taking advantage of the

modularity of the questions. We know that currently, instructors can create exams

using different tools, so this product focuses on providing advanced ease of use.

Therefore, the user interface should be as simple as possible while providing the

functionality of the basic modules.

1.2.2 Maintainability

Since Evalio targets various types of end users, such as instructors, students,

and teaching assistants, and includes different modules, we aim to make it as

sustainable as possible by splitting the architecture into services. A modular

codebase will enable isolated updates without breaking other services or modules.

1.2.3 Reliability

Evalio aims to be reliable. Given the variety of end-user types and use cases,

a single point of failure should not affect other modules, and any failure should be

6

quickly recoverable. We aim to increase reliability by splitting the application’s

architecture into separate services.

1.2.4 Security

Since we aim to support different user types (e.g., instructors and institutions),

the application should include a user authentication and authorization system to

ensure that each user type has the correct permissions to access specific modules.

Additionally, passwords and potentially sensitive information should be stored in a

coded form in the database to ensure security.

1.3 Definitions, Acronyms, and Abbreviations

This section provides definitions and explanations of terms, acronyms, and

abbreviations used throughout the document to ensure clarity and consistency.

1.3.1 Definitions

● Evalio – Our digital platform for managing exam questions, creating

assessments, analyzing student performance, and organizing exam-related

activities.

● Question Database – A repository that stores, categorizes, and manages

exam and quiz questions for reuse and analysis.

● Exam Builder – A tool within Evalio that allows instructors to manually or

automatically generate exams by selecting and arranging questions.

● Portfolio Builder – A module that enables teaching assistants and instructors

to compile course portfolios, including exam papers, attendance sheets, and

grading records, for accreditation and institutional documentation.

● Objection Session Manager – A feature that allows teaching assistants to

schedule and manage student review sessions for graded exams.

● Role-Based Access Control (RBAC) – A security mechanism that restricts

system access based on predefined roles (e.g., Instructor, TA, Admin).

● Accreditation Reports – Institutional compliance reports (e.g., ABET,

MÜDEK) generated by Evalio to assist in meeting regulatory requirements.

7

1.3.2 Acronyms and Abbreviations

● ABET – Accreditation Board for Engineering and Technology

● API – Application Programming Interface

● CI/CD – Continuous Integration / Continuous Deployment

● DBMS – Database Management System

● JWT – JSON Web Token

● LMS – Learning Management System

● LXP – Learning Experience Platform

● MÜDEK – Association for Evaluation and Accreditation of Engineering

Programs in Turkey

● RBAC – Role-Based Access Control

● UI/UX – User Interface / User Experience

● UML – Unified Modeling Language

1.4 Overview

This document serves as the detailed design specification for Evalio, an

advanced exam management and analytics platform aimed at improving assessment

processes in academic institutions. It provides a technical roadmap for the

development team, defining the system architecture, key components, data

management strategies, security policies, and scalability considerations. The report

ensures that every aspect of Evalio’s design is structured, efficient, and aligned with

best practices for performance and maintainability.

The document begins with an overview of the system architecture, describing

how Evalio is structured and how its different components interact. It introduces the

proposed architecture, breaking down core subsystems such as the client-side

interface, API gateway, logic services, data storage, and external integrations. Each

subsystem is explained in terms of its role, responsibilities, and interaction with other

parts of the system, ensuring a cohesive and maintainable design. Additionally, data

persistence ways, and access control mechanisms are outlined to enhance security,

performance, and reliability.

8

Beyond the technical framework, this report includes test cases and

engineering constraints. Finally, the document details team collaboration strategies,

development workflows, and the tools used throughout the project. By providing a

structured and well-defined design, this report ensures that Evalio is developed as a

well designed, efficient, and future proof solution for modern exam management.

2. Current software architecture

2.1 Evalio Current Architecture

Figure 1: Current High-Level System Architecture Diagram

Evalio's architecture follows a microservices-based approach, ensuring

modularity, scalability, and maintainability. It consists of a frontend, API gateway,

microservices, a data layer, and shared utilities. Microservices handle exam creation,

question management, authentication, course portfolio management, and objections,

operating independently for seamless updates and expansion. The data layer

includes PostgreSQL for structured storage and Redis for caching, ensuring high

performance. Consul supports service discovery, while TeXLive LaTeX Compiler

enables LaTeX-based exam generation. Evalio also uses Evalio-Common, a shared

9

library with reusable database models, authentication logic, and schema definitions,

ensuring consistency across services. This modular design enables secure access

control, efficient data handling, and streamlined exam management for universities

and institutions.

2.2 Competitors, Alternative and Current Solutions
Evalio is a modular and scalable exam management system focusing on

efficient exam creation, question management, and institution collaboration.

Compared to most current systems, the system provides a structured question

database, detailed analysis of question performance, and secure collaboration

among several universities.

LearnUpon (Competitor 1 - LMS Platform)

LearnUpon is an LMS that provides course and exam management to

organizations. However, it is primarily suited for course delivery rather than

exam-focused modular question management.

Key Differences & Advantages of Evalio:

● Evalio is neither an LMS nor an LXP but rather a dedicated examination

management platform and thus, examination-building is more dynamic,

structured, and data-centric.

● Unlike LearnUpon, Evalio facilitates cross-institutional question sharing so

teachers can tap into a centralized repository.

● In-depth question analysis in Evalio helps instructors to fine-tune their tests

with student performance insights, which LearnUpon lacks.

Potential Challenges & Limitations:

● LearnUpon already has a user base, which will give Evalio less chance of

being accepted into institutions already invested in an LMS.

● Since LearnUpon integrates with numerous third-party platforms, Evalio may

demand LMS compatibility features for broader applications.

10

● Some institutions may prefer an entire LMS with exam management, meaning

Evalio must position itself as a complementary, specialized tool rather than a

competitor to complete LMS platforms.

How We Overcome These Challenges:

● Evalio will enable integration into current LMS platforms (e.g., LearnUpon,

Moodle, and Canvas) using APIs and won't replace them.

● Emphasizing modular test development and question performance tracking

can be a basis for encouraging instructors to implement Evalio alongside LMS

capabilities.

HackerRank (Competitor 2 - Coding Assessment Platform)

HackerRank is a typical tech testing platform firms and universities employ to

test students/applicants via automated coding exams. While Evalio shares the

general goal of constructing well-organized exams, its applicability is broader,

covering many fields rather than just coding.

Key Differences & Advantages of Evalio:

● Evalio supports multi-format exams (text exams, multiple choice,

problem-solving, LaTeX-based math exams, etc.), whereas HackerRank is

coding-focused.

● Cross-institution question sharing allows universities to collaborate and build

wealthier question banks, which HackerRank does not emphasize.

● Evalio provides test-making in different forms (PDF, LaTeX, Google Docs),

more suitable for classroom settings.

Potential Challenges & Limitations:

● HackerRank utilizes an automated grading system, whereas Evalio is more

manual and organized in exam construction.

● Specific customers may expect automatic question creation and scoring,

which Evalio does not fully support.

11

How We Overcome These Challenges:

● Evalio introduces AI-assisted features such as converting images to latex.

 Figure 2: Proposed High-Level System Architecture Diagram

3. Proposed software architecture

3.1 Overview
Evalio follows a distributed microservices architecture, which separates core

functionalities into independent services. The system consists of the following key

components:

● Application Layer: A web-based front-end that provides users with an

intuitive interface for exam creation, question management, and analytics

visualization.

● API Gateway: A central entry point for all client requests, ensuring secure

communication between services and managing request routing.

12

● Microservices Layer:

○ Exam/Solution Builder Service: Manages exam creation, LaTeX

rendering, and question selection.

○ Question Service: Stores, retrieves, and manages exam questions with

metadata (difficulty, success rate, versioning).

○ Authentication Service (Auth Service): Handles user authentication,

role-based access control (RBAC), and session management.

○ Course Portfolio Builder Service: Enables the compilation of

institutional course portfolios for accreditation.

○ Objection Service: Organizes post-exam result viewing sessions and

manages student objections.

○ Analytics Service: Generates performance reports, success rate

statistics, and accreditation compliance reports.

● Data Layer: Manages storage through:

○ PostgreSQL (relational database for structured exam and user data)

○ Redis (caching and real-time session management)

○ AWS S3 (cloud-based object storage for scanned exam documents

and portfolio files)

● Infrastructure Layer:

○ Consul (for service discovery and health checks)

○ TeXLive LaTeX Compiler (to generate LaTeX-based exam PDFs)

● Messaging and Event Handling:

○ Redis Pub/Sub is used for inter-service communication, ensuring

event-driven updates.

13

3.2 Subsystem Decomposition

Figure 3: Proposed Subsystem Decomposition Diagram

3.3 Hardware/Software Mapping

Evalio is a software-only system with no dedicated hardware components. It

operates on cloud-based infrastructure, utilizing microservices, databases, and

caching for scalability and reliability. No hardware-software mapping is required

beyond standard server deployments.

14

3.4 Persistent Data Management

Evalio keeps its structured data in PostgreSQL and utilizes Redis for cache

purposes, thus ensuring scalable and efficient data storage. The system also

features Amazon S3 as an object storage for storing large documents in the Portfolio

Builder Service.

To enhance database scalability and performance, we aim to partition large

data sets with table partitioning and query optimization with indexes. S3 lifecycle

policies can also manage storage expenses by automatically migrating older

documents to lower-cost storage classes. With a responsive and cost-effective

system, these solutions ensure effective data persistence, maintainability, and

long-term scalability.

3.5 Access Control and Security

This application implements a strict role-based access control system. This is

because it contains sensitive information, such as exam questions, making it a

critical security concern to control who can access different application areas. We

have integrated role-based access control and defined specific access rules.

● Registration can only be performed by the institution. Instructors or TAs

cannot register; only the institution can add them to the system.

● When an institution signs in, they gain access only after admin approval.

● Questions are tagged as public or private. Public questions are visible to all

registered users in the system, while private questions can only be accessed

by individuals affiliated with the respective institution.

● Students cannot register or access the system. They can only access the

application through a temporary token sent via a link, which allows them to

select a time slot for an objection session.

● The admin is permitted to perform CRUD operations on all entities within the

system. This includes modifying, adding, and deleting questions and reports

and adding, deleting, or blocking users from the system.

15

● Instructors are allowed to view all questions in the database.

● TAs can only see the exams assigned to them and are not privileged to know

all question databases.

● Only instructors are allowed to modify questions.

In the below figure, you can see the access scope of different user types:

Figure 4: User access scope diagram

16

4. Subsystem Services

4.1 Client Subsystem

Figure 5: Client Side Subsystem

The Client Subsystem comprises multiple user interface components tailored

to a specific user role. These components facilitate interactions with the backend

services through REST APIs, ensuring seamless communication between users and

the system’s microservices

4.1.1 Student View

Students can view exam results, book objection sessions, and track

performance. Provides secure login access with authentication verification. Enables

students to review assigned exams and objection session schedules.

4.1.2 Instructor View

Provides instructors with tools for creating and managing exams. Allows

access to the question database, analytics reports, and accreditation tools. It

supports exam performance reviews and student success tracking.

17

4.1.3 Teaching Assistant (TA) View

Enables TAs to organize exam result viewing sessions and handle student

objections. Provides access to the Portfolio Builder for accreditation documentation.

Assists in exam evaluation and grading assistance.

4.1.4 Institution View

Designed for institution-level administrators to manage university-wide

settings. Supports collaborative exam sharing among different departments. Allows

administrators to oversee instructor and student access.

4.1.5 Admin View

Provides system-wide control over user access, institutions, and system

configurations. Manages user registration requests, security settings, and role

assignments. Ensures compliance with data security and system-wide policies.

4.1.6 Authentication View

Handles user login, password recovery, and authentication token validation.

Implements Role-Based Access Control (RBAC) to restrict functionalities based on

user roles. Supports OAuth 2.0, JWT authentication, and two-factor authentication

(2FA) for enhanced security.

4.2 Gateway Subsystem

Figure 6: API Gateway Subsystem

18

The Gateway Subsystem in Evalio serves as the centralized entry point for all

client requests, acting as a bridge between the frontend application and the backend

microservices. This component ensures secure, efficient, and structured

communication, enabling seamless data flow while maintaining authentication, load

balancing, and request routing. The API Gateway handles incoming HTTP requests

from the Client Subsystem and directs them to the appropriate microservices. It acts

as a reverse proxy, ensuring optimized routing, authentication, and security

enforcement.

The core component of this subsystem is Service Redirect, which is

responsible for routing client requests to the corresponding backend microservice,

ensuring security through JWT authentication and role-based access control

(RBAC), and handling CORS (Cross-Origin Resource Sharing) policies for secure

data exchange.

4.3 Logic Subsystem

Figure 7: Logic Layer Subsystem

The Logic Subsystem of Evalio executes business logic, data processing, and

system interactions across different microservices. This subsystem connects the API

19

Gateway to backend services, ensuring that all exam management, question

processing, authentication, and result-handling operations are performed efficiently.

The Logic Subsystem consists of multiple independent microservices, each

responsible for a specific functionality. These services interact with each other

through REST APIs and message queues, ensuring scalability and modularity. The

system follows a microservices architecture, allowing individual services to operate

independently and efficiently.

4.3.1 Exam & Solution Builder Service

Handles exam creation, solution generation, and LaTeX processing. Allows

manual and automatic exam generation with balanced difficulty levels. Supports

exporting exams to LaTeX, PDF, or Google Docs.

4.3.2 Question Service

Manages the question database, including classification, tagging, and version

control. Provides APIs for retrieving, updating, and deleting questions. Supports

metadata tracking, including difficulty levels and past usage statistics.

4.3.3 Authentication (Auth) Service

Manages user authentication and authorization using OAuth 2.0 and JWT.

Implements Role-Based Access Control (RBAC) to ensure secure access

management. Supports multi-institution authentication and user registration

workflows.

4.3.4 Portfolio Service

Allows teaching assistants and instructors to create course portfolios for

accreditation purposes. Stores and manages course materials, exam archives, and

institutional reports. Supports exporting portfolios in PDF format for submission to

accreditation bodies.

4.3.5 Objection Service

Manages exam result viewing sessions and student objections. Allows

students to book, reschedule, or cancel objection slots. Provides APIs for tracking

and resolving objections between students and instructors.

20

4.3.6 Interservice Communication Service

Handles notification services, including system alerts, emails, and

announcements. Uses Redis Pub/Sub for event-driven messaging to notify users of

exam updates or result availability. Supports real-time messaging for

student-instructor communication.

4.4 External Services Subsystem

Figure 8: External Services’ Subsystem

The External Services Subsystem in Evalio integrates third-party services and

external tools necessary for specific functionalities, such as document compilation.

One of the key components of this subsystem is the LaTeX Compiler Service which

is responsible for rendering and compiling LaTeX documents into PDFs, used in the

Exam Builder to generate formatted question papers and answer sheets. It Ensures

high-quality, standardized exam layouts for instructors and utilizes TeXLive LaTeX

distribution for compilation.

21

4.5 Data Management Subsystem

Figure 9: Data Management Subsystem

In the data layer, Evalio deals with two data types: persistent and

non-persistent. Persistent data like user information, questions, and exam details are

stored under the PostgreSQL database. Non-persistent data like 2FA tokens are

stored under the Redis GetSet system.

4.6 AWS Subsystem

Figure 10: AWS Subsystem

Objects like question images, portfolio documents, and user profile photos are stored

in AWS S3 data servers.

22

5. Test Cases

5.1 Functional Test Cases

5.1.1 Authentication Test Cases

Test ID: FT001 Category: Authentication Severity: Major

Objective Verify that an institution can successfully register to the system.

Steps 1. Open the application (Role: Institution).

2. Click on the register button.

3. Fill out the necessary information on the registration form.

4. Click the register button to complete the registration request.

5. Once the admin approves the registration request (at most in 2 days),

go to the email in the registration form.

Expected result The system successfully registers a verified institution.

Test ID: FT002 Category: Authentication Severity: Critical

Objective Verify that other user types rather than institutions cannot register to the

system.

Steps 1. Open the application (Role: TA, Instructor, Student, or any other user).

2. Click on the register button.

3. Fill out the necessary information on the registration form.

4. Click the register button to complete the registration request.

5. Once the admin receives the request, it will reject registration.

6. The user will get an email about an unauthorized registration request.

Expected result The system successfully rejects any other user’s registration request.

Test ID: FT003 Category: Authentication Severity: Critical

23

Objective Verify that unregistered/unverified users cannot log in.

Steps 1. User clicks login.

2. Fill out the requested information on the login form.

3. User gets a message ‘there is no registered user with this email.’

Expected result The system successfully prevents unregistered/unverified people from

logging in the application.

Test ID: FT004 Category: Authentication Severity: Critical

Objective Verify that registered/verified users can log in.

Steps 1. Click login.

2. Fill out the requested information on the login form.

3. The user gets a message: ‘Your 2fa code is sent your email.’

4. Check the email and copy the OTP code.

5. Return to the login page and enter OTP to verify 2fa.

6. Click the button to continue

7. You logged in.

Expected result The system successfully allows registered users to log in with 2-factor

authentication.

Test ID: FT005 Category: Authentication Severity: Critical

24

Objective Verify that an institution can register multiple TAs/Instructors to the

system.

Steps 1. Log in as an institution.

2. Go to the institution profile page.

3. Click on the register TA or Instructor button

4. Click “choose .csv file”

5. Choose the .csv file saved to the computer and already filled with the

“name, email” of the respected people.

6. Click Choose.

7. Click the register button.

Expected result The system successfully registers respective users to the system and

sends emails to the users with their temporary passwords.

Test ID: FT006 Category: Authentication Severity: Critical

Objective Verify that an institution can register multiple TAs/Instructors to the

system.

Steps 1. Log in as an institution.

2. Go to the institution profile page.

3. Click on the register TA or Instructor button

4. Fill out the form with the necessary information

5. Click the register button.

Expected result The system successfully registers the respective user with the system

and sends an email with their temporary password to the user.

5.1.2 Question Database Test Cases

Test ID: FT007 Category: Question DB Severity: Major

25

Objective Verify that an instructor can create and add a question to the database.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Enter valid question details.

5. Click "Submit."

Expected result The system successfully saves the question in the database and

displays a confirmation message.

Test ID: FT008 Category: Question DB Severity: Major

Objective Ensure the system prevents question creation if required fields are

missing.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Leave one or more blank question fields (e.g., question text or

required space).

5. Click "Submit."

Expected result The system displays an error message indicating the required fields are

missing. The question is not saved.

Test ID: FT009 Category: Question DB Severity: Major

26

Objective Ensure that an instructor can successfully edit and update an existing

question in the database.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Select an existing question from the list.

4. Click on the "Edit Question" button.

5. 5. Modify the question text, metadata (tags, type, difficulty level), or

LaTeX content with valid values.

5. Click "Save Changes."

Expected result The system successfully updates the question and reflects the

changes. A confirmation message is displayed after saving

Test ID: FT010 Category: Question DB Severity: Minor

Objective Ensure that the question description field has a reasonable character

limit.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Enter a very long question description exceeding the maximum

allowed length.

5. Click "Submit."

Expected result The system prevents submission and displays a warning about

exceeding character limits.

Test ID: FT011 Category: Question DB Severity: Major

27

Objective Ensure the system handles question search queries with partial

keywords appropriately.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Enter a partial keyword (e.g., "inte" instead of "integral").

4. Click the “Search” button or enter the key.

5. Review the displayed results

Expected result The system should return related results.

Test ID: FT012 Category: Question DB Severity: Major

Objective Ensure that instructors can apply multiple filters (Difficulty Level + Topic

+ Institution) simultaneously for questions.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Select multiple filters (Difficulty Level: Hard, Topic: Probability,

Institution: Bilkent University).

4. Click the Apply Filter button.

5. Review the displayed results

Expected result The system displays only questions that meet all selected filter criteria. If

no matching questions exist, the system displays a "No results found"

message.

5.1.3 LaTeX Service Test Cases

Test ID: FT013 Category: LaTex Severity: Moderate

28

Objective Ensure that LaTeX syntax is handled correctly in the question text.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Open the latex editor on that page.

5. Enter a question with the valid LaTeX syntax.

6. Wait for a second for automatic rendering.

Expected result The system correctly processes and shows the converted LaTex as a

PDF without errors on the right side of the page.

Test ID: FT014 Category: LaTex Severity: Moderate

Objective Ensure that incorrect LaTeX syntax is handled in the question text.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Open the latex editor on that page.

5. Enter a question with the invalid LaTeX syntax.

6. Wait for a second for automatic rendering.

Expected result The system does not convert LaTeX to a PDF, showing “LaTeX syntax

is incorrect or missing.”

Test ID: FT015 Category: LaTex Severity: Moderate

Objective Ensure that the system allows users to import a LaTeX file, validate its

content, and display it correctly in the LaTeX editor

29

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Click on the "Import LaTeX File" option.

5. Select a .tex file with a valid LaTeX syntax from the local system

and upload it.

6. Wait for a second for automatic rendering.

Expected result The system successfully uploads and displays the content of the .tex

file on the left side. Also, the preview renders correctly as a PDF on

the right side.

Test ID: FT016 Category: LaTex Severity: Moderate

Objective Ensure the system prevents users from importing LaTeX files with

incorrect formatting.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Click on the "Import LaTeX File" option.

5. Attempt to upload a corrupted or incorrectly formatted .tex file.

6. Wait for a second for automatic rendering.

Expected result The system shows the LaTeX content in the editor but does not

display rendered PDF. The system shows a validation error: “LaTeX

syntax is incorrect or missing.”

Test ID: FT017 Category: LaTex Severity: Critical

Objective Ensure that the system prevents users from importing non-LaTeX files.

30

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Click on “Add Question”

4. Click on the "Import LaTeX File" option.

5. Attempt to upload an unsupported file format (e.g., .docx, .pdf, .txt).

6. Wait for a second for automatic rendering.

Expected result The system rejects unsupported file formats and displays an error

message.

Test ID: FT018 Category: LaTex/PDF Severity: Critical

Objective Ensure that the system allows instructors to export a question as a

LaTeX or PDF file and that the exported content is correctly formatted.

Steps 1. Log in as an instructor

2. Navigate to the Question List Page

3. Select an existing question from the list.

4. Click on the "Export" button.

5. Choose the desired format: LaTeX (.tex) or PDF (.pdf).

6. Click "Download" and save the exported file.

Expected result The system generates an adequately formatted LaTeX (.tex) or PDF

(.pdf) file.

5.1.4 Exam Creation Test Cases

Test ID: FT019 Category: Exam Severity: Critical

Objective Ensure an instructor can successfully build an exam by selecting

questions and configuring exam settings.

31

Steps 1. Log in as an instructor

2. Navigate to the Profile page.

3. Click the “Create Exam” button.

4. Enter the valid values for the exam fields.

5. Click on the "Create" button.

6. Wait for the “Exam is successfully created” message.

5. Navigate to the Question List page

6. Select a question and click the “Add Question to Exam” button.

7. Click on the selected exam on the opened exams list.

8. Select another question and click the “Add Question to Exam”

button.

9. Click on the selected exam on the opened exams list.

10. Navigate to the Profile page.

11. Select and navigate the created exam template in the list on the

right side of the page.

Expected result The system shows exam parameters on the right side with added

questions. Also shows the created PDF with the combination of

questions on the right side.

Test ID: FT020 Category: LaTex, Exam Severity: Major

Objective Ensure an instructor can edit an existing exam, modify its LaTeX

content, and save the changes.

32

Steps 1. Log in as an instructor

2. Navigate to the Profile page.

3. Select an existing exam template from the exam list.

4. Click on the “Edit Exam” button.

5. Modify the LaTeX content of a question with valid syntax or exam

instructions.

6. Wait for a second for automatic rendering.

7. Click on the “Save Changes” buttons.

Expected result The exam updates successfully, and a confirmation message is

displayed. The updated LaTeX content is correctly rendered and

displayed.

Test ID: FT021 Category: Exam Severity: Critical

Objective Ensure that an instructor can successfully export an exam as a PDF

or LaTeX file.

Steps 1. Log in as an instructor

2. Navigate to the Profile page.

3. Select an existing exam template from the exam list.

4. Click on the “Export Exam” button.

5. Choose the desired format: LaTeX (.tex) or PDF (.pdf).

6. Click Download and save the file.

Expected result The system successfully generates a LaTeX or PDF file. The exported

file contains all exam details formatted correctly.

5.1.5 Slot Test Cases

Test ID: FT022 Category: Slot Severity: Major

Objective Verify that a TA/Instructor can create a new objection session using

valid parameters.

33

Steps 1. Log in as a TA/Instructor.

2. Navigate to the “Create Objection Session” page.

3. Fill in all required fields with valid data (startDatetime, endDatetime,

slotDurationMin, etc.).

4. Click Create Session to submit.

Expected result
The system responds with a success message and returns the newly

created objection session details (including generated slots). The

session status is set to ACTIVE.

Test ID: FT023 Category: Slot Severity: Major

Objective Verify that a TA/Instructor who owns the session can disable one or

more slot(s) in an ongoing objection session.

Steps 1. Log in as a TA/Instructor.

2. Open an ACTIVE objection session with multiple slots.

3. Select specific slots to disable.

4. Submit a DisableSlotsRequest with those slots.

Expected result
The specified slots change status to “disabled,” and students can no

longer reserve them. The system confirms with a success message.

Test ID: FT024 Category: Slot Severity: Major

Objective Ensure that the system appropriately handles invalid date/time inputs

(e.g., end time before start time).

34

Steps 1. Log in as a TA/Instructor.

2. Navigate to “Create Objection Session.”

3. Enter a startDatetime that is later than the endDatetime (e.g., start

= 2025-03-07 14:00, end = 2025-03-05 13:00).

4. Click Create Session.

Expected result The system rejects the request, returning an error message such as

“Invalid time range.” No session is created.

Test ID: FT025 Category: Slot Severity: Major

Objective Verify that a student can successfully reserve an available slot.

Steps 1. A TA/Instructor has already created an objection session with

multiple slots.

2. Access the link to the objection session (sessionPassword required

if set).

3. Select an available slot from the session.

4. Click Reserve Slot.

Expected result
The slot is marked as reserved under the student’s name, and other

students can no longer select that same slot. A confirmation message

(e.g., “Slot reserved successfully”) appears.

Test ID: FT026 Category: Slot Severity: Moderate

Objective Confirm that a student cannot overwrite or reserve a slot already

taken by another student.

35

Steps 1. A TA/Instructor has already created an objection session.

2. Access the link to the objection session (sessionPassword required

if set).

3. Another student has already reserved a particular slot.

4. Navigate to the same objection session page as a different user

than the user who already reserved a particular slot.

5. Attempt to reserve the already reserved slot.

Expected result
The system disables or grays out the taken slot and prevents

selection. An alert or warning message appears (e.g., “This slot is

already reserved”).

Test ID: FT027 Category: Slot Severity: Moderate

Objective Verify that a TA/Instructor can close an objection session, preventing

further slot reservations or modifications.

Steps 1. Log in as a TA/Instructor.

2. Navigate to the existing objection session list.

3. Select an ACTIVE session.

4. Click the Close Session button.

5. Confirm the status change.

Expected result
The objection session status changes to CLOSED, and students can

no longer reserve, modify, or leave slots. Previously reserved slots

remain visible for reference.

Test ID: FT028 Category: Slot Severity: Moderate

Objective Verify that a TA/Instructor can delete an objection session,

36

permanently removing all associated slots and reservations.

Steps 1. Log in as a TA/Instructor.

2. Navigate to the existing objection session list.

3. Select a session.

4. Click the Delete Session button.

5. Confirm the deletion.

Expected result
The system permanently deletes the session and all associated slot

data. Students no longer see the session in the link.

Test ID: FT029 Category: Slot Severity: Critical

Objective Verify that a student cannot reserve a slot that the TA/Instructor has

disabled.

Steps 1. A TA/Instructor creates an objection session.

2. Access the link to the objection session as Student

(sessionPassword required if set).

3. Select a disabled slot from the session.

4. Click to reserve the slot.

Expected result
The system blocks the selection of the disabled slot and displays an

error message like: "This slot is disabled."

Test ID: FT030 Category: Slot Severity: Major

Objective Verify that a slot cannot accept reservations beyond its capacity.

37

Steps 1. A TA/Instructor creates an objection session with slotCapacity = 3.

2. Three students reserve the slot.

3. A fourth student tries to reserve the same slot.

4. Click Reserve Slot.

Expected result
The system blocks the reservation and displays an error message:

"This slot is full. Please select another available slot."

Test ID: FT031 Category: Slot Severity: Major

Objective Verify that a student can change their reserved slot to another

available one.

Steps 1. A student enters the session and reserves a slot at 10:00 AM.

2. The student wants to choose a different time and tries to change it.

3. The student selects another available slot (e.g., 11:00 AM) and

confirms the change.

4. Click Change Slot.

Expected result
The system successfully updates the reservation to the new slot and

releases the old one for other students.

Test ID: FT032 Category: Slot Severity: Moderate

38

Objective Verify that a TA/Instructor can export the details of an objection

session as a PDF file.

Steps 1. Log in as a TA/Instructor.

2. Navigate to the objection session list.

3. Select a closed objection session.

4. Click on Export as PDF.

5. Verify that the downloaded PDF contains session details such as

date, time, slots, and student reservations.

Expected result
The system successfully generates and downloads a PDF file

containing session details.

Test ID: FT033 Category: Slot Severity: Major

Objective Verify that multiple students attempting to reserve the same slot at the

same time do not cause inconsistencies or double-booking issues.

Steps 1. A TA/Instructor creates an objection session with multiple slots and

capacity = 1.

2. Multiple students (e.g., 3 students) simultaneously attempt to

reserve the same available slot using parallel requests (JMeter).

Expected result
The system allows only one student to successfully reserve the slot.

No duplicate bookings should be created in the database.

The database maintains data integrity and does not allow conflicting

reservations.

39

5.1.6 Portfolio Builder Test Cases

Test ID: FT034 Category: Portfolio Severity: Moderate

Objective Verify that the system can create a new course using valid parameters.

Steps 1. Log in as an Instructor.

2. Navigate the portfolio main page

3. Click the “Add New Course” button

4. Fill all the required fields with valid data (course code, semester) in

the opened modal.

5. Click the “Create” button to submit.

Expected result The system successfully responds with a success message and

navigates the newly created course page.

Test ID: FT035 Category: Portfolio Severity: Major

Objective Verify that the user can import a document in the valid type to the

system.

Steps 1. Log in as an instructor.

2. Navigate the portfolio main page.

3. Click the course where the document will be imported.

4. Click the “Add File” button

5. Fill all the required fields (type, subtype) and optional fields

(assessment date).

6. Click the “Upload a File” button.

7. Select a .pdf, or a .tex file from the local system and upload it.

8. Wait for a second for automatic rendering.

Expected result The system successfully responds with a success message and lists the

newly created file in the portfolio list.

40

Test ID: FT036 Category: Portfolio Severity: Major

Objective Ensure that the system prevents users from importing non-Latex or

non-PDF files.

Steps 1. Log in as an instructor.

2. Navigate the portfolio main page.

3. Click the course where the document will be imported.

4. Click the “Add File” button

5. Fill all the required fields (type, subtype) and optional fields

(assessment date).

6. Click the “Upload a File” button.

7. Attempt to upload an unsupported file format other than .pdf or .tex

(e.g., docx, .txt).

8. Wait for a second for automatic rendering.

Expected result The system rejects unsupported file formats and displays an error

message.

Test ID: FT037 Category: Portfolio Severity: Major

Objective Verify that the system can create a new assignment, portfolio type (e.g.

quiz, exam).

Steps 1. Log in as an instructor.

2. Navigate the portfolio main page.

3. Click the course where the new assignment type will be created.

4. Click the “Add File” button.

5. Click the “Select Type” bar and select “Add a new type”.

6. Type the new assignment type name in the textbox that opens.

7. Click the “Add” button.

Expected result The system successfully creates the new assignment type with a

success message and lists the newly created type in the “Select Type”

list in the “Upload New File” modal.

41

Test ID: FT038 Category: Portfolio Severity: Moderate

Objective Verify that the system can successfully edit and update an existing

syllabus in the database.

Steps 1. An instructor has already created a new course.

2. Navigate to the main page of the selected course.

3. Click the “Edit” button in the course summary.

4. Click the “+” button to add a new “assignment component”.

5. Fill all the required fields with valid data (number of assignments,

grade contribution) in the opened modal.

6. Click the “Save” button.

Expected result The system successfully updates the syllabus and shows the changed

syllabus in the summary section. A success message is displayed after

saving.

Test ID: FT039 Category: Portfolio Severity: Moderate

Objective Ensure that an instructor can successfully create a merged portfolio of a

course.

Steps 1. Log in as an instructor.

2. Navigate the portfolio main page.

3. Click the course from where the portfolio will be created.

4. Click the “See Portfolio” button.

5. Select desired documents from the list.

6. Click the “Create Portfolio” button.

7. Click on the "Create" button from the information modal that opens.

Expected result The system successfully saves the merged document to the system. A

success message is displayed after saving.

42

Test ID: FT040 Category: Portfolio Severity: Minor

Objective Ensure that an instructor can successfully export a portfolio of a course.

Steps 1. Log in as an instructor.

2. Navigate the portfolio main page.

3. Click the course from where the portfolio will be created.

4. Click the “See Portfolio” button.

5. Select desired document(s) from the list.

6. Click the “Export” button.

Expected result The system successfully generates a portfolio file and exports it to the

local system. A success message is displayed after exporting.

Test ID: FT041 Category: Portfolio Severity: Critical

Objective Verify that an instructor can delete a course, permanently removing all

documents in the portfolio.

Steps 1. An instructor has already created the course to remove.

2. Login as an instructor.

3. Navigate the portfolio main page

4. Click the “Delete” button from the action tab in the row of the course

to remove.

5. Write “DELETE” into the textbox in the pop-up modal.

6. Click on the "delete" button, which will be clickable after entering the

text.

Expected result The system permanently deletes the course information and all

associated portfolio data. A success message is displayed after deleting.

43

Test ID: FT042 Category: Portfolio Severity: Critical

Objective Verify that an instructor can delete a document permanently.

Steps 1. An instructor has already created the document to remove.

2. Log in as an instructor.

3. Navigate the portfolio main page.

4. Click the course from where the document will be removed.

5. Click the “See Portfolio” button.

6. Click the “Delete” button from the action tab in the row of the

document to remove.

Expected result The system permanently deletes the document information. A success

message is displayed after deleting.

Test ID: FT043 Category: Portfolio Severity: Moderate

Objective Verify that the system can successfully edit and update an existing

assignment in a syllabus in the database.

Steps 1. An instructor has already created a course and the course has at

least one type of assignment in it.

2. Log in as an instructor.

3. Navigate to the main page of the selected course.

4. Click the “Edit” button in the course summary.

5. Fill all the desired fields with valid data (date, no. of assignment) in

the desired type of assignment.

6.. Click the “Save” button.

Expected result The system successfully updates the assignment information and shows

the changed information in the summary section. A success message is

displayed after saving.

44

Test ID: FT044 Category: Portfolio Severity: Moderate

Objective Verify that the system can display an existing document in LaTeX format

in the “Edit Exam” page.

Steps 1. There is at least one .tex type of assignment in the course portfolio.

2. Log in as an instructor.

2. Navigate the portfolio main page.

3. Click the course where the assignment will be opened.

4. Click the “See Portfolio” button.

5. Click the “Edit” button from the action tab in the row of the document

to open.

Expected result The system successfully navigates the user to the “Edit Exam” section.

The LaTeX content is correctly rendered and displayed.

Test ID: FT045 Category: Portfolio Severity: Minor

Objective Verify that the system can successfully filter the portfolio according to

the section.

Steps 1. An instructor has already created a course and the course has at

least one section.

2. Log in as an instructor.

3. Navigate the portfolio main page.

4. Click the “All Sections” button.

5. Choose the desired section among the selections.

Expected result The system successfully filters the portfolio page according to the

section. A filtered page is displayed.

45

5.2 Non-Functional Test Cases

Test ID: NFT001 Category Usability Severity Moderate

Objective Verify that the UI of the software is self-explanatory so that users are

not overwhelmed with excessive amounts of content at once.

Steps 1. Create sample user groups.

2. Prepare appropriate demo sessions for each group and observe

their usage behaviors.

3. Ensure they refer to the user manual and ask questions about the

software.

4. Evaluate the outputs.

Expected result The user manual and UI should be adequate for users to perform core

actions of the software. A moderate amount of questions to be asked

is expected.

Test ID: NFT002 Category Maintainability Severity Critical

Objective Verify that the code base is self-documented, non-redundant, and

embracing new features.

Steps 1. Check for redundant code segments.

2. Check for code segments that do not conform to best practices.

3. Ask each developer to cross-check the code blocks that they have

not developed. Ask them if those code segments are

self-documenting.

4. Determine risky parts that may block the development in the future.

Expected result The amount of risky code segments is none or a few at least.

46

Test ID: NFT003 Category Reliability Severity Critical

Objective Verify that the software is invulnerable to single-point failure.

Steps 1. Shut down services one at a time to identify possible single-point

failures.

2. Observe the outcomes on the client side.

Expected result No or little impact on the client side should be observed. Failures must

not cause any sensitive data to leak.

Test ID: NFT004 Category Security Severity Critical

Objective Verify that non-authorized entities are not allowed to access protected

resources.

Steps 1. Test the application with common attack vectors like:

● XSS

● XSRF

● UI Redressing

● MITM Attack

● SQL Injection

● Brute-Force Attacks

Expected result Application is invulnerable to each attack vector.

47

Test ID: NFT005 Category: Security Severity: Critical

Objective Verify that only authorized services can communicate with each other

using Service-to-Service Authentication (S2S Auth).

Steps 1. Identify a service that requires S2S authentication (e.g., Objection

Service).

2. From an unauthorized service (e.g., Question Service), attempt to

send an authenticated request to Objection Service.

3. Observe the system’s response.

4. Repeat the request with a valid S2S authentication token and

observe the response.

Expected result
The unauthorized service receives a 401 Unauthorized or 403

Forbidden error with a message like "Service authentication failed"

Test ID: NFT006 Category: Security Severity: Critical

Objective Verify that users can only access endpoints permitted by their role,

ensuring Role-Based Access Control (RBAC) enforcement through

JWT authentication.

Steps 1. Log in as an Institution role user and obtain a valid JWT token.

2. Make a POST request to the Instructor Register endpoint

(/api/institution/register-instructors) using the Institution JWT token.

3. Observe the response and confirm that the request is successful.

4. Log in as an Instructor role user and obtain a valid JWT token.

5. Attempt to make the same POST request to

/api/institution/register-instructors using the Instructor JWT token.

Expected result
The Instructor role user receives a 403 Forbidden or 401

Unauthorized response with a message like "Permission denied"

48

6. Consideration of Various Factors in Engineering

Design

6.1 Constraints

6.1.1 Implementation Constraints

The essential implementation constraints in the project are ensuring secure

authentication with Two-factor authentication (2FA), enforcing role-based access to

protect exam materials, and implementing tools for accurate scanning and

classification of diverse question formats.

6.1.1.1 Authentication

2FA should be considered to enhance security and prevent exam leaks. This

additional layer of authentication is vital for protecting sensitive exam-related

materials and maintaining the system's confidentiality.

6.1.1.2 Data Access

The system must enforce secure, role-based access to maintain academic

integrity and restrict unauthorized access to exam-related materials. For instance,

only instructors and authorized TAs should be able to view, edit, or archive exam

questions.

6.1.1.3 Question Scanning

When uploading and scanning questions, the system must handle the

complexity of extracting and organizing content from various input formats, including

text, images, and scanned documents, to ensure accurate classification and usability

of the questions in the database.

6.1.2 Economic Constraints

6.1.2.1 Cloud Service

Initially, we plan to run Evalio on a central server. Establishing and

maintaining a server from scratch is a burden for our team. So, we decided to build

49

Evalio’s server using a cloud service. Cloud services are the trend nowadays for

many services with varying necessities and scales, and they are cost-efficient

options for organizations like us [2]. The first economic issue with our application is

the operation and possible scaling cost of the cloud service we will provide.

6.1.2.2 Advertisement

The economic issue is the advertisement of the Evalio. We need to introduce

how we can improve the operations of universities relating to the examination

procedure. Additionally, what we can do should be determined by the demands of

the target group. Therefore, target group analysis should be done periodically, and a

reasonable budget should be allocated.

6.1.3 Time Constraint

The development and deployment of Evalio are limited by the academic

calendar and project deadlines. The system must be fully functional and ready for

demonstration within the allocated time frame. This constraint requires efficient time

management, prioritization of core features, and potential deferral of less critical

functionalities to future phases. Additionally, periodic testing and feedback collection

must be integrated into the timeline without disrupting the development schedule.

6.1.4 Professional and Ethical Issues

We need to consider the academic success of the universities to ensure a fair

access policy. Evalio should expand its supported languages according to the

institutions collaborating and provide reasonable suggested questions. Academic

success in Evalio’s context should not be a primary factor in the given service. Even

if the Evalio is a for-profit application, it must not be allowed to undermine academic

integrity.

6.2 Standards

6.2.1 Modeling Standards

UML 2.5 will be used for system modeling, including use cases, sequences,

and class diagrams to represent system architecture and workflows [3].

50

6.2.2 Requirements Documentation

The IEEE 830 standard will guide the structure and format of requirements

documentation, ensuring clarity and traceability of functional and non-functional

requirements [4].

6.2.3 Security Standards

The project will align with ISO 27001 standards for information security

management, ensuring that data confidentiality, integrity, and availability are

maintained [5].

7. Teamwork Details

7.1 Ensuring Coordination and Efficient Workflow in the Project

Since our project is a large-scale project which consists of some

interconnected modules, it is crucial for team members to work in a harmonious

manner in most cases to ensure delivery in time and completely. In this context, we

used Jira to coordinate effectively and track the progress of each team member. Jira

is a project management tool that helps teams efficiently plan, monitor, release, and

support high-quality software with confidence [6]. In Jira, it is possible to observe not

only who is assigned to a task but also the deadlines and priority levels, which

makes it an effective choice for the project.

Additionally, since the project consists of a lot of interrelated components and

different team members need to work compatibility on these different parts, we

placed significant importance on documentation. We prepared a comprehensive

Google Docs file that serves as a single access point for both code-related manuals

and other documents. This file included reports, developer manuals, diagrams,

meeting dates, and minutes along with their respective links. Additionally, for quick

communication, we used WhatsApp, and for planned meetings, we used Google

Meet. As a shared workspace, we used GitHub for version control, Excalidraw and

Visual Paradigm for diagram creation, Figma for designs, and Google Drive for file

management. All these tools provided a common platform where all team members

could track the progress of the project.

51

In addition to all these tools; to follow teamwork, we organized meetings to

convey the progress of the projects in a more effective and more comprehensive

way. Depending on the academic workload, these meetings were held between once

every two weeks and up to three times within these two weeks. At times, they took

place in person, while at other times, they were conducted online via Google Meet.

In the early stages, these meetings focused on project planning and task distribution.

In later phases, discussions centered around what had been completed, what

needed to be done, upcoming challenges, support requests if necessary, and

deliverables. To ensure that meeting progress was not forgotten and could be easily

tracked later, meeting logs were kept. Through all these efforts, team progress and

seamless teamwork were aimed throughout the process.

7.2 Contributing and functioning effectively on the team

As mentioned, Evalio is a project which consists of several different modules.

Accordingly, we distributed the tasks among the team members. In the coding

phase, all team members contributed to both backend and frontend development.

Specifically, Eren H. Arım worked on exam creation and LaTeX processing, while

Burak Demirel focused on microservice architecture setup and the question

database services. Dilara Mandıracı and Yusuf Toraman handled slot creation,

admin operations, and authentication. Ahmet Reşat Demir took part in the portfolio

builder service.

For testing, each member was responsible for writing unit tests for the module

they worked on. A more broader test was planned collectively with all group

members. Everyone contributed to the project documentation and reports equally.

The same principle of equality was maintained in the presentation and management

processes. However, Yusuf Toraman took on more responsibility in task creation and

Jira maintenance since he is more experienced.

7.3 Helping creating a collaborative and inclusive environment

In both coding and other processes such as documentation, specific task

distribution was always maintained. However, team members supported each other

when there was a need for assistance. Depending on the urgency or importance of

the issue, one or more team members provided help when necessary. When there is

52

a problem, a task was created on Jira, or other team members were informed via

WhatsApp based on the urgency. These collaborative efforts were crucial not only for

those in need of assistance but also for team members to ensure the progress of the

project. All team members were aware of that since a modular part of the project

could impact the overall progress of the project, collaborative work and support were

essential.

7.4 Taking lead role and sharing leadership on the team

Throughout the project, some tasks were assigned directly, while others were

decided through discussions. For example, each team member was responsible for

both the coding areas they led and the related parts in the reports.

As mentioned before, Evalio consists of many different modules. These

modules were shared among the team members, and each member took leadership

of their assigned part. Besides his own tasks, Burak set up the project's

microarchitecture and led this process. He informed others about the architectural

rules they needed to follow and helped them with their setups. Any changes in the

architecture were made with his support. Meanwhile, since Eren and Dilara had

taken a graphic design course, they led the UI design process along with their own

tasks. They created a base template for the frontend, which other team members

followed. Everyone writes their frontend code according to the rules set by these UI

leaders. Similarly, Yusuf led the slot creation service. Since he also had experience

in project management and Jira, he took the lead in maintaining Jira and managing

the project workflow. Ahmet was responsible for leading the portfolio section. By

using each team member's strong side and expertise, we made the project

development process much easy-to-maintain and more efficient.

53

8. Glossary
Accreditation Reports: Reports generated to demonstrate compliance with

educational standards like ABET and MÜDEK.

API Gateway: A central entry point for managing and routing client requests to

backend microservices.

Authentication Service: A microservice responsible for verifying user identities and

enforcing Role-Based Access Control (RBAC).

Cloud Storage (AWS S3): A cloud-based storage used for storing documents,

images, and other large files in Evalio.

Exam Builder: A feature/module that allows instructors to create exams by selecting

and organizing questions from the question database.

LaTeX Compiler: A tool integrated into Evalio for rendering LaTeX-based questions

and generating formatted PDF exams.

Microservices Architecture: A software design approach where different services

(e.g., question service, authentication service, exam service) operate independently.

Objection Session: A structured process in which students can schedule slots for

their graded exams.

Portfolio Builder: A module that enables instructors to compile and manage course

materials, and necessary documents.

Redis Cache: An in-memory caching system used to enhance performance by

reducing database query times.

Role-Based Access Control (RBAC): A security mechanism that assigns different

permissions to users based on their roles (e.g., Instructor, TA, Admin).

54

Two-Factor Authentication (2FA): An additional security layer requiring users to verify

their identity through a secondary authentication method.

UML (Unified Modeling Language): A standardized visual representation method

used to design system architecture and workflows.

User Roles: Different access levels assigned to users in Evalio, including Instructor,

Teaching Assistant (TA), Institution, and System Admin.

55

9. References
[1] Purdue University, “Creating Exams,” Purdue Innovative Learning, 2024. [Online].

Available:

https://www.purdue.edu/innovativelearning/teaching/module/creating-exams/.

[Accessed: Nov. 21, 2024].

[2] Amazon Web Services, Inc., “What is a Cloud Server? - Cloud Servers Explained

- AWS,” AWS Documentation, 2024. [Online]. Available:

https://aws.amazon.com/what-is/cloud-server/. [Accessed: Nov. 21, 2024].

[3] OMG, “About the Unified Modeling Language Specification Version 2.5.1,” Object

Management Group, 2017. [Online]. Available:

https://www.omg.org/spec/UML/2.5.1/About-UML. [Accessed: Nov. 21, 2024].

[4] Docsheets, “IEEE 830 Requirements Specifications,” Top Requirements

Management and Project Management Tools, Nov. 2, 2023. [Online]. Available:

https://www.docsheets.com/ieee-830-requirements-specifications-guide/.

[Accessed: Nov. 20, 2024].

[5] ISO, “ISO/IEC 27000 family — Information security management,” International

Organization for Standardization, 2024. [Online]. Available:

https://www.iso.org/standard/iso-iec-27000-family. [Accessed: Nov. 21, 2024].

[6] Atlassian, “Get started with Jira - Comprehensive beginner's guide,” Atlassian,

2024. [Online]. Available:

https://www.atlassian.com/software/jira/guides/getting-started/introduction.

[Accessed: Mar. 08, 2025].

56

	TABLE OF CONTENTS
	

	1. Introduction
	1.1 Purpose of the system
	1.2 Design Goals
	1.2.1 User Friendliness / Usability
	1.2.2 Maintainability
	1.2.3 Reliability
	1.2.4 Security

	1.3 Definitions, Acronyms, and Abbreviations
	1.3.1 Definitions
	1.3.2 Acronyms and Abbreviations

	1.4 Overview

	2. Current software architecture
	2.1 Evalio Current Architecture
	2.2 Competitors, Alternative and Current Solutions

	3. Proposed software architecture
	3.1 Overview
	3.2 Subsystem Decomposition
	3.3 Hardware/Software Mapping
	3.4 Persistent Data Management
	3.5 Access Control and Security

	4. Subsystem Services
	4.1 Client Subsystem
	4.1.1 Student View
	4.1.2 Instructor View
	4.1.3 Teaching Assistant (TA) View
	4.1.4 Institution View
	4.1.5 Admin View
	4.1.6 Authentication View

	4.2 Gateway Subsystem
	4.3 Logic Subsystem
	4.3.1 Exam & Solution Builder Service
	4.3.2 Question Service
	4.3.3 Authentication (Auth) Service
	4.3.4 Portfolio Service
	4.3.5 Objection Service
	4.3.6 Interservice Communication Service

	4.4 External Services Subsystem
	4.5 Data Management Subsystem
	4.6 AWS Subsystem

	5. Test Cases
	5.1 Functional Test Cases
	5.1.1 Authentication Test Cases
	
	5.1.2 Question Database Test Cases
	
	5.1.3 LaTeX Service Test Cases
	
	5.1.4 Exam Creation Test Cases
	5.1.5 Slot Test Cases
	5.1.6 Portfolio Builder Test Cases

	
	
	
	5.2 Non-Functional Test Cases

	6. Consideration of Various Factors in Engineering Design
	6.1 Constraints
	6.1.1 Implementation Constraints
	6.1.1.1 Authentication
	6.1.1.2 Data Access
	6.1.1.3 Question Scanning

	6.1.2 Economic Constraints
	6.1.2.1 Cloud Service
	6.1.2.2 Advertisement

	6.1.3 Time Constraint
	6.1.4 Professional and Ethical Issues

	6.2 Standards
	6.2.1 Modeling Standards
	6.2.2 Requirements Documentation
	6.2.3 Security Standards

	7. Teamwork Details
	7.1 Ensuring Coordination and Efficient Workflow in the Project
	7.2 Contributing and functioning effectively on the team
	7.3 Helping creating a collaborative and inclusive environment
	7.4 Taking lead role and sharing leadership on the team

	8. Glossary
	9. References

