

BILKENT UNIVERSITY

CS492 - Senior Design Project II

Final Report

T2423 - Evalio

Eren Hayrettin Arım 22002306

Ahmet Reşat Demir 22002299

Mehmet Burak Demirel 22003396

Dilara Mandıracı 22101643

Yusuf Toraman 22002885

TABLE OF CONTENTS
TABLE OF CONTENTS...2
1. Introduction.. 5
2. Requirements Details.. 5

2.1 Functional Requirements... 5
2.1.1 Questions Database and Exam Builder:... 5
2.1.2 Analysis Tools..6
2.1.3 Portfolio Builder... 6
2.1.4 Exam Result Viewing Session Organizer..7

2.2 Nonfunctional Requirements..7
2.2.1 User Friendliness / Usability..7
2.2.2 Maintainability..7
2.2.3 Reliability... 7
2.2.4 Security... 8

3. Final Architecture and Design Details... 8
3.1 Evalio Final Architecture...8
3.2 Overview.. 9
3.3 Subsystem Decomposition... 11
3.4 Hardware/Software Mapping.. 11
3.5 Persistent Data Management...12
3.6 Access Control and Security.. 12

4. Development/Implementation Details.. 13
4.1. Frontend.. 13

4.1.1. Layout & Navigation... 14
4.1.2. Styling & Theme... 15
4.1.3. Deployment.. 15

4.2. Backend.. 16
4.2.1. Microservice Setup...17
4.2.2. API Gateway.. 17
4.2.3. Service Discovery & Health..18
4.2.4 Security & Configuration..18
4.2.5 Common Code Re-use..19
4.2.6. Containerisation & Deployment..19

4.3 Storage...20
4.3.1. Database Tables...21

4.3.1.1. User Service Tables...21
4.3.1.2. Question & Exam Service Tables.. 22
4.3.1.3. Slot Service Tables.. 24
4.3.1.4. Portfolio Service Tables... 25

4.3.2. Google Cloud Storage..27
5. Test Cases and Results... 28

5.1 Functional Test Cases... 28
5.1.1 Authentication Test Cases...28

2

5.1.2 Question Database Test Cases...31
5.1.3 LaTeX Service Test Cases.. 34
5.1.4 Exam Creation Test Cases..37
5.1.5 Slot Test Cases... 39
5.1.6 Portfolio Builder Test Cases.. 45

5.2 Non-Functional Test Cases.. 51
6. Maintenance Plan and Details...53

6.1. Monitoring & Health Checks..53
6.2. Scheduled Maintenance Tasks..54
6.3. Scaling & Capacity Planning... 54

7. Other Project Elements... 55
7.1. Consideration of Various Factors in Engineering Design.. 55

7.1.1 Constraints.. 55
7.1.1.1 Authentication & Data Access.. 55
7.1.1.2 Question Scanning... 55
7.1.1.3 Cloud Services & Containerization... 55
7.1.1.4 Advertisement...55
7.1.1.5 Time Management..56

7.2. Ethics and Professional Responsibilities...56
7.3. Teamwork Details.. 56

7.3.1. Contributing and functioning effectively on the team to establish goals, plan
tasks, and meet objectives... 56
7.3.2. Helping creating a collaborative and inclusive environment.............................57
7.3.3. Taking lead role and sharing leadership on the team.......................................57
7.3.4. Meeting objectives..58

7.4 New Knowledge Acquired and Applied.. 60
8. Conclusion and Future Work.. 61

8.1 Conclusion..61
8.2 Future Work..61

9. User Manual..63
9.1 General...63

9.1.1 Landing Page.. 63
9.1.2 Login..64
9.1.3 Registration Request...65

9.2 Admin Management... 66
9.3.1 Admin Page...66

9.3 Profile Pages.. 68
9.3.1 Institution Profile Page.. 68
9.3.2 Instructor Profile Page...72
9.3.3 Teaching Assistant Profile Page..75

9.4 Question & Exam Module...76
9.4.1 List Questions..76
9.4.2 Create Question.. 77
9.4.3 Show Question Details.. 78

3

9.4.4 Edit Question...79
9.4.5 Create New Exam... 80
9.4.6 Add Question To Selected Exam...81
9.4.7 Show Exam Details... 82
9.4.8 Edit Exam Details.. 83

9.5 Objection Module... 84
9.5.1 Creating an Objection Session (TA/Instructor).. 84
9.5.2 Managing the Objection Session (TA/Instructor)...86
9.5.3 Making Objection Session Reservations (Student)... 89

9.6 Portfolio Module... 92
9.6.1 Courses and Portfolio Page.. 92
9.6.2 Add New Course Modal.. 93
9.6.3 Filter Modal..94
9.6.4 Course Summary Page... 95
9.6.5 Assign TA modal..97
9.6.6 Add Portfolio Item Modal... 98
9.6.7 Portfolio Files Page... 99
9.6.8 Portfolios Page/ Add File Modal.. 101
9.6.9 Portfolios Page/ Add Portfolio Type Modal..102
9.6.10 Portfolios Page/ Add Portfolio Type Modal..103
9.6.11 Portfolio Creation Page..104

10. Glossary..106
11. References.. 109

4

1. Introduction
Even if the traditional paper-based exam method is widely used, it often falls short of

accurately measuring student success and meeting modern educational needs.

Research from Purdue University shows the importance of mapping and analyzing

questions during the exam preparation phase to enhance exam quality and

performance [1]. In response, our team aims to develop Evalio, an advanced exam

database and management application designed to streamline exam creation and

improve assessment effectiveness. Evalio enables instructors to create practical,

high-quality exams through a shared, searchable question database that supports

multiple courses. With features like question usage tracking, editing, versioning,

export options, and detailed performance analytics, Evalio helps create balanced

assessments while managing assignments and exams. Additionally, it offers secure,

multi-university collaboration. It ultimately contributes to improved teaching and

learning outcomes.

2. Requirements Details

2.1 Functional Requirements

The functional requirements of this project focus on creating a secure, efficient, and

user-friendly system to manage question databases, build exams, analyze

performance records, and organize exam result viewing sessions. Each module is

designed to streamline workflows for instructors, teaching assistants, and students.

The system also supports accreditation needs and inter-university collaboration.

2.1.1 Questions Database and Exam Builder:​

Maintain a question database for each course, categorized by type and topic

classification.

●​ Instructors can add new questions to the database.

●​ Log the history of question usage, including statistical data.

●​ Allow the addition, editing, and deprecation of questions.

5

●​ ​​Implement permission controls to restrict or allow access to specific

course-related question pools.

●​ Provide an exam builder that supports the following:

○​ Question selection and arrangement.

○​ Editable space and points allocation for questions.

○​ Header section customization (course name, date, name/ID fields,

score table).

○​ Export to LaTeX, Google Docs, or other visual formatting editors, with

optional PDF export.

○​ In-editor question editing and creation.

●​ Enable instructors to build modular exams by selecting questions from the

database using filters such as difficulty level, topic, and type.

●​ Include functionality to auto-generate balanced exams based on predefined

criteria, such as equal topic distribution or desired difficulty levels.

2.1.2 Analysis Tools

●​ University and course instructors can create custom reports based on

selected metrics:

○​ Correlation between attendance and academic performance.

○​ Success rate per question.

○​ Success rate comparison with other universities per question.

○​ etc.…

●​ University and course instructors can create ABET/MÜDEK reports according

to global standards.

2.1.3 Portfolio Builder

●​ Enable TAs to upload scans of selected exams (best, average, worst),

quizzes, homework, projects, and exam seating plans.

●​ Upload attendance sheets and grading files.

●​ Generate course summary forms from uploaded and system data.

●​ Export a merged PDF containing all portfolio elements, including exam

solution keys.

6

2.1.4 Exam Result Viewing Session Organizer

●​ Enable teaching assistants to create exam result viewing sessions.

●​ Enable teaching assistants to create time slots for created sessions, which

allows configurable numbers.

●​ Allow teaching assistants to cancel or rearrange sessions.

●​ Allow users to check schedules via the institution's local system to avoid

conflicts.

●​ Allow students to access the session with the provided session key and

password.

●​ Announce and manage session sign-ups on a first-come, first-served basis.

2.2 Nonfunctional Requirements

2.2.1 User Friendliness / Usability

Evalio aims to be user-friendly with its easy and understandable interface, designed

to facilitate users while creating exams by taking advantage of the modularity of the

questions. We know that currently, instructors can create exams using different tools,

so this product focuses on providing advanced ease of use. Therefore, the user

interface should be as simple as possible while providing the functionality of the

basic modules.

2.2.2 Maintainability

Since Evalio targets various types of end users, such as instructors, students, and

teaching assistants, and includes different modules, we aim to make it as

sustainable as possible by splitting the architecture into services. A modular

codebase will enable isolated updates without breaking other services or modules.

2.2.3 Reliability

Evalio aims to be reliable. Given the variety of end-user types and use cases, a

single point of failure should not affect other modules, and any failure should be

7

quickly recoverable. We aim to increase reliability by splitting the application’s

architecture into separate services.

2.2.4 Security

Since we aim to support different user types (e.g., instructors and institutions), the

application should include a user authentication and authorization system to ensure

that each user type has the correct permissions to access specific modules.

Additionally, passwords and potentially sensitive information should be stored in a

coded form in the database to ensure security.

3. Final Architecture and Design Details

3.1 Evalio Final Architecture

Figure 1: Final High-Level System Architecture Diagram

Evalio's architecture follows a microservices-based approach, ensuring modularity,

scalability, and maintainability. It consists of a frontend, API gateway, microservices,

a data layer, and shared utilities. Microservices handle exam creation, question

8

management, authentication, course portfolio management, and objections,

operating independently for seamless updates and expansion. The data layer

includes PostgreSQL for structured storage and Redis for caching, ensuring high

performance. Consul supports service discovery, while TeXLive LaTeX Compiler

enables LaTeX-based exam generation. Evalio also uses Evalio-Common, a shared

library with reusable database models, authentication logic, and schema definitions,

ensuring consistency across services. This modular design enables secure access

control, efficient data handling, and streamlined exam management for universities

and institutions.

3.2 Overview

Evalio follows a distributed microservices architecture, which separates core

functionalities into independent services. The system consists of the following key

components:

●​ Application Layer: A web-based front-end that provides users with an

intuitive interface for exam creation, question management, and analytics

visualization.

●​ API Gateway: A central entry point for all client requests, ensuring secure

communication between services and managing request routing.

●​ Microservices Layer:

○​ Exam/Solution Builder Service: Manages exam creation, LaTeX

rendering, and question selection.

○​ Question Service: Stores, retrieves, and manages exam questions with

metadata (difficulty, success rate, versioning).

○​ Authentication Service (Auth Service): Handles user authentication,

role-based access control (RBAC), and session management.

○​ Course Portfolio Builder Service: Enables the compilation of

institutional course portfolios for accreditation.

9

○​ Objection Service: Organizes post-exam result viewing sessions and

manages student objections.

○​ Analytics Service: Generates performance reports, success rate

statistics, and accreditation compliance reports.

●​ Data Layer: Manages storage through:

○​ PostgreSQL (relational database for structured exam and user data)

○​ Redis (caching and real-time session management)

○​ Google (cloud-based object storage for scanned exam documents and

portfolio files)

●​ Infrastructure Layer:

○​ Consul [2] (for service discovery and health checks)

○​ TeXLive LaTeX Compiler (to generate LaTeX-based exam PDFs)

10

3.3 Subsystem Decomposition

Figure 2: Proposed Subsystem Decomposition Diagram

3.4 Hardware/Software Mapping

Evalio is a software-only system with no dedicated hardware components. It

operates on cloud-based infrastructure, utilizing microservices, databases, and

caching for scalability and reliability. No hardware-software mapping is required

beyond standard server deployments.

11

3.5 Persistent Data Management

Evalio keeps its structured data in PostgreSQL and utilizes Redis for cache

purposes, thus ensuring scalable and efficient data storage. The system also

features GCS as an object storage for storing large documents in the Portfolio

Builder Service.

To enhance database scalability and performance, we aim to partition large data sets

with table partitioning and query optimization with indexes. GCS lifecycle policies can

also manage storage expenses by automatically migrating older documents to

lower-cost storage classes. With a responsive and cost-effective system, these

solutions ensure effective data persistence, maintainability, and long-term scalability.

3.6 Access Control and Security

This application implements a strict role-based access control system. This is

because it contains sensitive information, such as exam questions, making it a

critical security concern to control who can access different application areas. We

have integrated role-based access control and defined specific access rules.

●​ Registration can only be performed by the institution. Instructors or TAs

cannot register; only the institution can add them to the system.

●​ When an institution signs in, it gains access only after admin approval.

●​ Questions are tagged as public or private. Public questions are visible to all

registered users in the system, while private questions can only be accessed

by individuals affiliated with the respective institution.

●​ Students cannot register or access the system. They can only access the

application through a temporary token sent via a link, which allows them to

select a time slot for an objection session.

●​ The admin is permitted to perform CRUD operations on all entities within the

system. This includes modifying, adding, and deleting questions and reports,

as well as adding, deleting, or blocking users from the system.

●​ Instructors are allowed to view all questions in the database.

12

●​ TAs can only see the exams assigned to them and are not privileged to know

all the question databases.

●​ Only instructors are allowed to modify questions.

In the below figure, you can see the access scope of different user types:

Figure 3: User access scope diagram

4. Development/Implementation Details

4.1. Frontend

The Evalio user interface is developed using React 18 and is structured around a

role-driven, component-based architecture that aligns with the system’s

microservices backend. The main goal of the frontend is to deliver a transparent,

scalable, and responsive experience tailored to five distinct user roles: Teaching

Assistant, Instructor, Institution, Student, and System Admin.

13

Each role accesses the platform through specific views and workflows, supported by

route-based permission control and dynamic UI rendering. This structure allows

features such as exam creation, objection scheduling, performance analytics, and

portfolio management to be presented fluently.

React’s modular structure made it easier for our team to develop the interfaces for

different user roles in parallel without losing consistency in design or behavior. By

sharing familiar layout and state management patterns, we were able to keep the

experience uniform across the application. We also focused on keeping the frontend

loosely connected to the backend, so changes in APIs wouldn’t break the interface.

4.1.1. Layout & Navigation

This section describes the overall layout structure and navigation logic of the Evalio

frontend, focusing on how the interface adapts dynamically based on user roles and

session state.

●​ Top-level Shell: A persistent AppLayout component renders the navigation

bar, collapsible side menu, and notification tray.

●​ Role-aware Menus: Menu items are computed from the JWT’s role claim and

reactively updated on refresh.

●​ ProtectedRoute / PublicRoute wrappers enforce authentication and silently

refresh expired tokens through the Gateway.

Figure 4: Role Access Table

14

4.1.2. Styling & Theme

Evalio’s visual identity is built on a consistent color palette and a shared layout

structure. A centralized theme configuration ensures all pages have uniform spacing,

typography, and color choices.

Shared layout components such as buttons, tables, and headers are reused across

different modules, promoting visual consistency and maintainability.

4.1.3. Deployment

The Evalio frontend is deployed as a static web application served via Nginx within a

Docker container. The production build is generated using React’s build script, and

the output files are placed in the Nginx serving directory (/usr/share/nginx/html) [2].

A custom nginx.conf handles client-side routing and proxies /api requests to the

backend Gateway, ensuring frontend and backend integration. Deployment is

orchestrated using Docker Compose.yaml, while a helper script (manager.sh)

simplifies building and running the container with commands like ./manager.sh build.

Since all code is served statically, environment-specific configurations (e.g., API

base URLs) must be resolved at build time or handled server-side. The setup is

easily extendable for both development and production environments.

Figure 5: Frontend Container Deployment and API Proxy Flow

15

4.2. Backend

The Evalio backend is organised around a microservice architecture that

decomposes each business capability into an independently deployable and

maintainable service. This architectural style was chosen to enable modular

development, improve scalability, and allow different people to work on separate

services in parallel without creating interdependencies. Each microservice

encapsulates a specific domain logic and communicates with others through

well-defined RESTful APIs.

This section outlines the core development choices, implementation strategies, and

the supporting infrastructure that ensure Evalio remains scalable, secure, and

adaptable to institutional requirements over time.

Figure 6: Evalio Backend High-Level Service Topology

16

4.2.1. Microservice Setup

Figure 7: Microservice Setup of Evalio

All services expose RESTful endpoints (/api/<service>/…) and are packaged as

Docker images published to an internal registry. Evalio-common and scripts are the

helper folders in the Evalio structure.

4.2.2. API Gateway

A lightweight FastAPI-based Gateway validates JWTs, can apply rate limits, and

forwards traffic to the appropriate microservice. By centralizing cross-cutting

concerns such as authentication, routing, and request handling, the Gateway keeps

individual services thin and language-agnostic. NGINX is used as an API Gateway in

the Evalio Backend.

This design choice also simplifies CORS handling, enforces a single public entry

point, and aligns with zero-trust architecture principles. It additionally opens the door

for future enhancements like request-level metrics, load-aware routing, and A/B

testing at the API level.

17

4.2.3. Service Discovery & Health

All containers register with Hashicorp Consul at start-up. Consul performs:

●​ Active health checks (HTTP 200 probes every 10s), enabling

auto-deregistration of unhealthy tasks.​

●​ DNS-style discovery, so the gateway routes are by logical name

(question-service.service). Currently, this feature of Consul is not actively

used, but it can be easily added to facilitate communication and management.

4.2.4 Security & Configuration

Evalio’s authentication infrastructure is based on JSON Web Tokens (JWT) [4]

issued by the auth-service. These tokens include standard claims such as sub

(subject), role, and exp (expiration), and are signed using an RSA private key. Other

services validate the authenticity of incoming requests by verifying the JWT

signature using the corresponding public key, ensuring secure and stateless access

control across the system.

All sensitive configuration values, such as database credentials, service keys, and

signing secrets, are managed through .env files loaded into each container at

runtime. These environment files are mounted via Docker Compose and are never

embedded into the container images, reducing the risk of credential leakage.

Internal communication between microservices occurs over a private Docker overlay

network, isolating service traffic from the public internet and ensuring that all

inter-service communication remains secure within the deployment environment.

In addition, extra user-side security systems are used in Evalio. On each login, an

OTP code is sent to the user. The Admin approves institution registration, and the

institution handles instructor registration. Students cannot register for the system, but

can use it temporarily in the slot service.

18

4.2.5 Common Code Re-use

A dedicated evalio-common/ package holds

●​ Pydantic DTOs are shared between client-server and service-to-service.

●​ Error/success response schema helpers.

●​ Database models.

●​ Dependencies.

●​ Logging & tracing middleware.

Publishing this package to the local PyPI mirror ensures one-line upgrades and

eliminates copy-paste across repos.

4.2.6. Containerisation & Deployment

Evalio is fully containerized using Docker, allowing for consistent local development

and production environments. Each microservice, including the gateway, domain

services, and utility tool, is built and packaged as a separate container image. This

modular structure enables each service's independent development, testing, and

deployment.

Service orchestration is managed using Docker Compose, separated into two main

configurations:

●​ docker-compose.yaml defines core services such as auth-service,

exam-service, portfolio-service, slot-service, and the gateway.

●​ docker-compose-infra.yaml handles supporting components like Consul,

which provides service discovery and health checks.

A helper script named manager. It simplifies local development and testing by

wrapping standard commands like build, up, and logs, enabling fast service

bootstrapping during iterative development cycles.

Each container reads its .env file, separating secrets and environment-specific

configurations from code to securely inject credentials and runtime variables. These

values are mounted dynamically and are never baked into the images themselves,

helping to enforce secure deployment practices.

19

All containers communicate over a private Docker overlay network, isolating internal

service traffic from external exposure and ensuring secure microservice

communication.

Finally, the whole system is deployed to a virtual server on AWS EC2, using Docker

Compose directly on the instance to launch and manage services. This setup allows

the platform to operate in a production-like environment while remaining easily

portable to future orchestrators such as ECS or Kubernetes.

Figure 8: Container Architecture of Evalio

4.3 Storage

Evalio uses a centralized PostgreSQL database to store all structured application

data, including users, questions, exams, portfolios, objection slots, and related

metadata. Although the system adopts a microservice architecture, a shared

relational database is used to simplify data management. Each microservice is

responsible for interacting with its subset of database tables through well-defined

ORM layers, without violating the encapsulation of domain logic.

This unified schema approach enables more straightforward implementation of

relationships, such as assigning teaching assistants to exams or tracking which

institution owns a particular question.

20

Alembic manages schema evolution in a controlled and reproducible way for

database migrations. With Alembic, each structural change to the database (e.g.,

adding a column, modifying constraints) is versioned and applied consistently across

all environments, ensuring that the database remains in sync with the application

logic over time.

ORM models are defined using SQLAlchemy with declarative mappings, and the

data layer is structured to support scalability. For clarity, common fields such as

created_at, updated_at, and deleted_at have been intentionally omitted from the

documentation tables as they are often automatically managed and not directly

relevant to domain logic.

4.3.1. Database Tables

4.3.1.1. User Service Tables

The table below is used to store instructors and teaching assistants. Basic and

necessary user information is stored in the table. These two tables hold the

institution_id in addition to the institution table, because it is essential to know which

institution the TA and the instructor are affiliated with.

Figure 9: Instructor and Teaching Assistant Table

The table below is used to store institutions. Basic and necessary institution

information is stored in the table.

21

Figure 10: Institution Table

4.3.1.2. Question & Exam Service Tables

The table below shows the Question table. A question may have an exam, or the

question may have unique properties. For this reason, there are fields such as

is_private and required_space.

Figure 11: Question Table

The Exam Question table is similar to the Question table above, but this time it

stores information about the Question related to a specific Exam.

22

Figure 12: Exam Question Table

The Exam table is similar to the Question table above, but it stores information about

the Exam this time.

Figure 13: Exam Table

This table holds the relation between the Exam and the TA

Figure 14: Exam TA Association Table

23

4.3.1.3. Slot Service Tables

The table below contains basic information about the objection session. There is a

Slot and a Day Range in an Objection Session.

Figure 15: Objection Session Table

The Objection Day Range table keeps the day ranges of an Objection. An Objection

can be scheduled over multiple days.

Figure 16: Objection Day Range Table

The Slot table represents a single Slot within an Objection. A Slot may have more

than one capacity, and its status may vary, such as disabled or active, so it also has

fields like this.

Figure 17: Slot Table

24

The reservation table lets you know the status of a particular slot within a specific

objection session. In this table, the student-slot relationship can be ensured.

Figure 18: Reservation Table

4.3.1.4. Portfolio Service Tables

This table holds static information about university courses such as name, code,

department, and description. It is linked to an institution.

Figure 19: Course Table

The Course Semester table stores each course's temporal and academic

term-specific details, including year, semester, instructor, and number of sections.

Figure 20: Course Semester Table

25

This table tracks uploaded portfolio documents for each instructor. It links to the

portfolio type, instructor, and optionally a portfolio list.

Figure 21: Portfolio Table

The portfolio type table defines metadata for different portfolio categories, such as

exams or quizzes, including submission count, score averages, and assigned dates.

Figure 22: Portfolio Type Table

The table below groups portfolios under a single list for bulk export or accreditation

purposes. Summary and merged file fields support PDF generation.

Figure 23: Portfolio List Table

26

4.3.2. Google Cloud Storage

Evalio uses Google Cloud Storage (GCS) to store large unstructured files,

particularly within the Portfolio Service, where instructors upload final portfolio

documents in PDF format. These files, which can include multiple exam artifacts and

accreditation materials, are stored as objects in GCS buckets to ensure durability

and scalability beyond the limits of traditional relational databases.

Instead of embedding large binaries in PostgreSQL, Evalio offloads them to GCS

and stores only the corresponding URLs or references in the database. This

approach significantly reduces database load, improves file retrieval performance,

and enables seamless integration with PDF generation and merging workflows.

Access to uploaded files is secured through signed URLs, ensuring only authorized

users can access the content during export or download operations.

27

5. Test Cases and Results

5.1 Functional Test Cases

5.1.1 Authentication Test Cases

Test ID: FT001 Category: Authentication Severity: Major

Objective Verify that an institution can successfully register with the system.

Steps 1. Open the application (Role: Institution).

2. Click on the register button.

3. Fill out the necessary information on the registration form.

4. Click the register button to complete the registration request.

5. Once the admin approves the registration request (at most in 2 days),

go to the email address in the registration form.

Expected result The system successfully registers a verified institution.

Date / Result 01/05/2025 - Pass

Test ID: FT002 Category: Authentication Severity: Critical

Objective Verify that other user types, rather than institutions, cannot register for

the system.

Steps 1. Open the application (Role: TA, Instructor, Student, or any other user).

2. Click on the register button.

3. Fill out the necessary information on the registration form.

4. Click the register button to complete the registration request.

5. Once the admin receives the request, it will reject registration.

6. The user will get an email about an unauthorized registration request.

Expected result The system successfully rejects any other user’s registration request.

Date / Result 01/05/2025 - Pass

28

Test ID: FT003 Category: Authentication Severity: Critical

Objective Verify that unregistered/unverified users cannot log in.

Steps 1. User clicks login.

2. Fill out the requested information on the login form.

3. User gets a message ‘there is no registered user with this email.’

Expected result The system successfully prevents unregistered/unverified people from

logging into the application.

Date / Result 01/05/2025 - Pass

Test ID: FT004 Category: Authentication Severity: Critical

Objective Verify that registered/verified users can log in.

Steps 1. Click login.

2. Fill out the requested information on the login form.

3. The user gets a message: ‘Your 2fa code is sent to your email.’

4. Check the email and copy the OTP code.

5. Return to the login page and enter the OTP to verify 2FA.

6. Click the button to continue

7. You logged in.

Expected result The system successfully allows registered users to log in with 2-factor

authentication.

Date / Result 01/05/2025 - Pass

29

Test ID: FT005 Category: Authentication Severity: Critical

Objective Verify that an institution can register multiple TAs/Instructors to the

system.

Steps 1. Log in as an institution.

2. Go to the institution profile page.

3. Click on the register TA or Instructor button

4. Click “choose .csv file.”

5. Choose the .csv file saved to the computer and already filled with the

“name, email” of the respective people.

6. Click Choose.

7. Click the register button.

Expected result The system successfully registers respective users to the system and

sends emails to the users with their temporary passwords.

Date / Result 01/05/2025 - Pass

Test ID: FT006 Category: Authentication Severity: Critical

Objective Verify that an institution can register a single TA/Instructors to the

system.

Steps 1. Log in as an institution.

2. Go to the institution profile page.

3. Click on the register TA or Instructor button

4. Fill out the form with the necessary information

5. Click the register button.

Expected result The system successfully registers the respective user with the system

and sends an email with their temporary password to the user.

Date / Result 01/05/2025 - Pass

30

5.1.2 Question Database Test Cases

Test ID: FT007 Category: Question DB Severity: Major

Objective Verify that an instructor can create and add a question to the database.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Enter valid question details.

5. Click "Submit."

Expected result The system successfully saves the question in the database and

displays a confirmation message.

Date / Result 01/05/2025 - Pass

Test ID: FT008 Category: Question DB Severity: Major

Objective Ensure the system prevents question creation if required fields are

missing.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Leave one or more blank question fields (e.g., question text or

required space).

5. Click "Submit."

Expected result The system displays an error message indicating the required fields are

missing. The question is not saved.

Date / Result 01/05/2025 - Pass

31

Test ID: FT009 Category: Question DB Severity: Major

Objective Ensure an instructor can edit and update an existing question in the

database.

Steps 1. Log in as an instructor.

2. Navigate to the Question List Page.

3. Select an existing question from the list and click that row.

4. Click on the "Edit Question" button.

5. Modify the question text, metadata (tags, type, difficulty level), or

LaTeX content with valid values.

5. Click "Save Changes."

Expected result The system successfully updates the question and reflects the

changes. A confirmation message is displayed after saving.

Date / Result 01/05/2025 - Pass

Test ID: FT010 Category: Question DB Severity: Minor

Objective Ensure that the question description field has a reasonable character

limit.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Enter a very long question description exceeding the maximum

allowed length of 500.

Expected result The system prevents writing more than 500 characters and stops.

Date / Result 01/05/2025 - Pass

32

Test ID: FT011 Category: Question DB Severity: Major

Objective Ensure the system handles question search queries with partial

keywords appropriately.

Steps 1. Log in as an instructor.

2. Navigate to the Question List Page.

3. Enter a partial keyword (e.g., "inte" instead of "integral").

4. Click the “Search” button or enter the key.

5. Review the displayed results.

Expected result The system should return related results.

Date / Result 01/05/2025 - Pass

Test ID: FT012 Category: Question DB Severity: Major

Objective Ensure that instructors can simultaneously apply multiple filters

(Difficulty Level + Tag + Institution) for questions.

Steps 1. Log in as an instructor.

2. Navigate to the Question List Page.

3. Select multiple filters (Difficulty Level: Easy, Tags: Binary Search,

Institution: Bilkent University).

4. Review the displayed results.

Expected result The system displays only questions that meet all selected filter criteria.

Date / Result 01/05/2025 - Pass

33

5.1.3 LaTeX Service Test Cases

Test ID: FT013 Category: LaTeX Severity: Moderate

Objective Ensure that LaTeX syntax is handled correctly in the question text.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Open the LaTeX editor on that page.

5. Enter a question with the valid LaTeX syntax.

6. Wait for a second for automatic rendering.

Expected result The system correctly processes and shows the converted LaTeX as a

PDF without errors on the right side of the page.

Date / Result 01/05/2025 - Pass

Test ID: FT014 Category: LaTeX Severity: Moderate

Objective Ensure that incorrect LaTeX syntax is handled in the question text.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Open the LaTeX editor on that page.

5. Enter a question with the invalid LaTeX syntax.

6. Wait for a second for automatic rendering.

Expected result The system does not convert LaTeX to a PDF, showing “LaTeX syntax

error.”

Date / Result 01/05/2025 - Pass

34

Test ID: FT015 Category: LaTeX Severity: Moderate

Objective Ensure the system allows users to import a LaTeX file, validate its

content, and display it correctly in the LaTeX editor.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Click on the "Import LaTeX File" option.

5. Select a .tex file with a valid LaTeX syntax from the local system

and upload it.

6. Wait for a second for automatic rendering.

Expected result The system successfully uploads and displays the content of the .tex

file on the left side. Also, the preview renders correctly as a PDF on

the right side.

Date / Result 01/05/2025 - Pass

Test ID: FT016 Category: LaTeX Severity: Moderate

Objective Ensure the system prevents users from importing LaTeX files with

incorrect formatting.

Steps 1. Log in as an instructor.

2. Navigate to the Profile Page.

3. Click on the “Create New Question” button.

4. Click on the "Import LaTeX File" option.

5. Attempt to upload a corrupted or incorrectly formatted .tex file.

6. Wait for a second for automatic rendering.

Expected result The system shows the LaTeX content in the editor but does not

display the rendered PDF. The system shows a validation error:

“LaTeX syntax error.”

Date / Result 01/05/2025 - Pass

35

Test ID: FT017 Category: LaTeX Severity: Critical

Objective Ensure that the system prevents users from importing non-LaTeX files.

Steps 1. Log in as an instructor.

2. Navigate to the Question List Page.

3. Click on “Add Question”.

4. Click on the "Import LaTeX File" option.

5. Attempt to upload an unsupported file format (e.g., .docx, .pdf, .txt).

Expected result The system will not list the unsupported file formats, and the user

cannot select these files.

Date / Result 01/05/2025 - Pass

Test ID: FT018 Category: LaTeX/PDF Severity: Critical

Objective Ensure that the system allows instructors to export a question as a

LaTeX or PDF file and that the exported content is correctly formatted.

Steps 1. Log in as an instructor.

2. Navigate to the Question List Page.

3. Select an existing question from the list.

4. Click the "Export PDF" button.

5. Click the “Export LaTeX” button.

Expected result The system generates an adequately formatted LaTeX (.tex) and PDF

(.pdf) file.

Date / Result 01/05/2025 - Pass

36

5.1.4 Exam Creation Test Cases

Test ID: FT019 Category: Exam Severity: Critical

Objective Ensure an instructor can build an exam by selecting questions and

configuring exam settings.

Steps 1. Log in as an instructor

2. Navigate to the Profile page.

3. Click the “Create New Exam” button.

4. Enter the valid values for the exam fields.

5. Click on the "Create" button.

6. Wait for the “Exam is successfully created” message.

5. Navigate to the Question List page

6. Select a question and click the “Add Question to Exam” button.

7. Click on the selected exam on the opened exams list.

8. Select another question and click the “Add Question to Exam”

button.

9. Click on the selected exam on the opened exams list.

10. Navigate to the Profile page.

11. Select and navigate the created exam template in the list on the

right side of the page.

Expected result The system shows exam parameters on the right side with added

questions. Also indicates the created PDF with the combination of

questions on the right side.

Date / Result 01/05/2025 - Pass

37

Test ID: FT020 Category: LaTeX, Exam Severity: Major

Objective Ensure an instructor can edit an existing exam, modify its LaTeX

content, and save the changes.

Steps 1. Log in as an instructor

2. Navigate to the Profile page.

3. Select an existing exam template from the exam list.

4. Click on the “Edit Exam” button.

5. Change the order of the questions by using the drag and drop

feature, and change the exam metadata.

6. Wait for a second for automatic rendering.

7. Click on the “Save Changes” button.

Expected result The exam updates successfully, and a confirmation message is

displayed. The updated LaTeX content is correctly rendered and

displayed.

Date / Result 01/05/2025 - Pass

Test ID: FT021 Category: Exam Severity: Critical

Objective Ensure that an instructor can export an exam as a PDF or LaTeX file.

Steps 1. Log in as an instructor

2. Navigate to the Profile page.

3. Select an existing exam template from the exam list.

4. Click the “Export Exam LaTeX” button.

5. Click the “Export Exam PDF” button.

Expected result The system successfully generates a LaTeX and PDF file. The

exported files contain all exam details formatted correctly.

Date / Result 01/05/2025 - Pass

38

5.1.5 Slot Test Cases

Test ID: FT022 Category: Slot Severity: Major

Objective Verify that a TA/Instructor can create a new objection session using

valid parameters.

Steps 1. Log in as a TA/Instructor (You will be directed to the Profile page).

2. Navigate to the “Create Objection Session” page.

3. Fill in all required fields with valid data (startDatetime, endDatetime,

slotDurationMin, etc.).

4. Click “Create” to create a new objection session.

Expected result The system responds with a success message and returns the newly

created objection session details (including generated slots). The

session status is set to ACTIVE.

Date / Result 01/05/2025 - Pass

Test ID: FT023 Category: Slot Severity: Major

Objective Verify that a TA/Instructor who owns the session can disable one or

more slots in an ongoing objection session.

Steps 1. Log in as a TA/Instructor.

2. Click an ACTIVE objection session from the “Created Objections”

bar of the table.

3. Click one of the ACTIVE slots to disable.

Expected result The specified slots change status to “DISABLED,” and students can

no longer reserve them. The system confirms with a success

message.

Date / Result 01/05/2025 - Pass

39

Test ID: FT024 Category: Slot Severity: Major

Objective Ensure the system appropriately handles invalid date/time inputs (e.g.,

end time before start time).

Steps 1. Log in as a TA/Instructor.

2. Navigate to “Create Objection Session.”

3. Enter a startDatetime that is later than the endDatetime (e.g., start

= 2025-03-07 14:00, end = 2025-03-05 13:00).

4. Click Create Session.

Expected result The system rejects the request, returning an error message such as

“Invalid time range.” No session is created.

Date / Result 01/05/2025 - Pass

Test ID: FT025 Category: Slot Severity: Major

Objective Verify that a student can successfully reserve an available slot.

Steps 1. A TA/Instructor has already created an objection session with

multiple slots.

2. Access the link to the objection session (enter their email).

3. Select an available slot from the session.

4. Click Reserve Slot.

5. Confirm Reservation.

Expected result The slot is marked as reserved under the student’s name, and other

students can no longer select that same slot. A confirmation message

(e.g., “Slot reserved successfully”) appears.

Date / Result 01/05/2025 - Pass

40

Test ID: FT026 Category: Slot Severity: Moderate

Objective Confirm that a student cannot overwrite or reserve a slot already

taken by another student.

Steps 1. A TA/Instructor has already created an objection session.

2. Access the link to the objection session (sessionPassword required

if set).

3. Another student has already reserved a particular slot.

4. Navigate to the same objection session page as a different user

than the user who already reserved a particular slot.

5. Attempt to reserve the already reserved slot.

Expected result The system disables or grays out the taken slot and prevents

selection. An alert or warning message appears (e.g., “This slot is

already reserved”).

Date / Result 01/05/2025 - Pass

Test ID: FT027 Category: Slot Severity: Moderate

Objective Verify that a TA/Instructor can close an objection session, preventing

further slot reservations or modifications.

Steps 1. Log in as a TA/Instructor.

2. Navigate to the existing objection session list.

3. Select an ACTIVE session.

4. Click the “Terminate Session” button.

5. Confirm the status change.

Expected result The objection session status changes to CLOSED, and students can

no longer reserve, modify, or leave slots. Previously reserved slots

remain visible for reference.

Date / Result 01/05/2025 - Pass

41

Test ID: FT028 Category: Slot Severity: Moderate

Objective Verify that a TA/Instructor can delete an objection session,

permanently removing all associated slots and reservations.

Steps 1. Log in as a TA/Instructor.

2. Navigate to the “created objections” table.

3. Click the Trash Can button, which appears only next to the

terminated sessions.

4. Confirm the deletion.

Expected result The system permanently deletes the session and all associated slot

data. Students no longer see the session in the link.

Date / Result 01/05/2025 - Pass

Test ID: FT029 Category: Slot Severity: Critical

Objective Verify that a student cannot reserve a slot that the TA/Instructor has

disabled.

Steps 1. A TA/Instructor creates an objection session.

2. Access the link to the objection session as a Student

(sessionPassword required if set).

3. Select a disabled slot from the session.

4. Click to reserve the slot.

Expected result The system blocks the selection of the disabled slot and displays an

error message like: "This slot is disabled."

Date / Result 01/05/2025 - Pass

42

Test ID: FT030 Category: Slot Severity: Major

Objective Verify that a slot cannot accept reservations beyond its capacity.

Steps 1. A TA/Instructor creates an objection session with a slot capacity =

3.

2. Three students reserve the slot.

3. A fourth student tries to reserve the same slot.

4. Click Reserve Slot.

Expected result The system blocks the reservation and displays an error message:

"This slot is full. Please select another available slot."

Date / Result 01/05/2025 - Pass

Test ID: FT031 Category: Slot Severity: Major

Objective Verify that a student can change their reserved slot to another

available one.

Steps 1. A student enters the session and reserves a slot at 10:00 AM.

2. The student wants to choose a different time and tries to change it.

3. The student cancels their previous reservation by clicking on a

reserved slot.

4. Confirm reservation cancellation.

3. The student selects another available slot (e.g., 11:00 AM) and

confirms the change.

4. Click Reserve Slot.

Expected result The system successfully updates the reservation to the new slot and

releases the old one for other students.

Date / Result 01/05/2025 - Pass

43

Test ID: FT032 Category: Slot Severity: Moderate

Objective Verify that a TA/Instructor can see the details of any objection session.

Steps 1. Log in as a TA/Instructor.

2. Navigate to the created objection table.

3. Select an objection session.

4. Click on any slot to see reservations.

Expected result The system successfully generates and downloads a PDF file

containing session details.

Date / Result 01/05/2025 - Pass

Test ID: FT033 Category: Slot Severity: Major

Objective Verify that multiple students attempting to reserve the same slot

simultaneously do not cause inconsistencies or double-booking

issues.

Steps 1. A TA/Instructor creates an objection session with multiple slots and

capacity = 1.

2. Multiple students (e.g., three students) simultaneously attempt to

reserve the same available slot using parallel requests (JMeter).

Expected result The system allows only one student to reserve the slot successfully.

No duplicate bookings should be created in the database.

The database maintains data integrity and does not allow conflicting

reservations.

Date / Result 01/05/2025 - Pass

44

5.1.6 Portfolio Builder Test Cases

Test ID: FT034 Category: Portfolio Severity: Moderate

Objective Verify that the system can create a new course using valid parameters.

Steps 1. Log in as an Instructor.

2. Navigate to the portfolio main page

3. Click the “Add New Course” button

4. Fill all the required fields with valid data (course code, semester) in

the opened modal.

5. Click the “Create” button to submit.

Expected result The system responds with a success message and navigates to the

newly created course page.

Date / Result 01/05/2025 - Pass

Test ID: FT035 Category: Portfolio Severity: Major

Objective Verify that the user can import a valid document type into the system.

Steps 1. Log in as an instructor.

2. Navigate to the portfolio main page.

3. Click the course where the document will be imported.

4. Click the “Add File” button

5. Fill all the required fields (type, subtype) and optional fields

(assessment date).

6. Click the “Upload a File” button.

7. Select a .pdf or a .tex file from the local system and upload it.

8. Wait for a second for automatic rendering.

Expected result The system responds with a success message and lists the newly

created file in the portfolio list.

Date / Result 01/05/2025 - Pass

45

Test ID: FT036 Category: Portfolio Severity: Major

Objective Ensure that the system prevents users from importing non-Latex or

non-PDF files.

Steps 1. Log in as an instructor.

2. Navigate to the portfolio main page.

3. Click the course where the document will be imported.

4. Click the “Add File” button

5. Fill all the required fields (type, subtype) and optional fields

(assessment date).

6. Click the “Upload a File” button.

7. Attempt to upload a file format other than .pdf or .tex.

8. Wait for a second for automatic rendering.

Expected result The system rejects unsupported file formats and displays an error

message.

Date / Result 01/05/2025 - Pass

Test ID: FT037 Category: Portfolio Severity: Major

Objective Verify that the system can create a new assignment or portfolio type

(e.g., quiz or exam).

Steps 1. Log in as an instructor.

2. Navigate to the portfolio main page.

3. Click the course semester where the assignment type will be created.

4. Click the “Add File” button.

5. Click the “Select Type” bar and select “Add a new type”.

6. Type the new assignment type name in the textbox that opens.

7. Click the “Add” button.

Expected result The system successfully creates the new assignment type with a

success message and lists the newly created type in the “Select Type”

list in the “Upload New File” modal.

Date / Result 01/05/2025 - Pass

46

Test ID: FT038 Category: Portfolio Severity: Moderate

Objective Verify that the system can successfully edit and update an existing

syllabus in the database.

Steps 1. An instructor has already created a new course.

2. Navigate to the main page of the selected course.

3. Click the “Edit” button in the course summary.

4. Click the “+” button to add a new “assignment component”.

5. Fill all the required fields with valid data (number of assignments,

grade contribution) in the opened modal.

6. Click the “Save” button.

Expected result The system successfully updates the syllabus and shows the changed

syllabus in the summary section. A success message is displayed after

saving.

Date / Result 01/05/2025 - Pass

Test ID: FT039 Category: Portfolio Severity: Moderate

Objective Ensure that an instructor can successfully create a merged portfolio of a

course.

Steps 1. Log in as an instructor.

2. Navigate to the portfolio main page.

3. Click the course where the portfolio will be created.

4. Click the “See Portfolio” button.

5. Select the desired documents from the list.

6. Click the “Create Portfolio” button.

7. Click the "Create" button in the open information modal.

Expected result The system successfully saves the merged document to the system. A

success message is displayed after saving.

Date / Result 01/05/2025 - Pass

47

Test ID: FT040 Category: Portfolio Severity: Minor

Objective Ensure that an instructor can successfully export a portfolio of a course.

Steps 1. Log in as an instructor.

2. Navigate to the portfolio main page.

3. Click the course where the portfolio will be created.

4. Click the “See Portfolio” button.

5. Select desired document(s) from the list.

6. Click the “Export” button.

Expected result The system successfully generates and exports a portfolio file to the

local system. A success message is displayed after exporting.

Date / Result 01/05/2025 - Pass

Test ID: FT041 Category: Portfolio Severity: Critical

Objective Verify that an instructor can delete a course, permanently removing all

documents in the portfolio.

Steps 1. An instructor has already created the course to remove.

2. Log in as an instructor.

3. Navigate to the portfolio main page

4. Click the “Delete” button from the action tab in the row of the course

to remove.

5. Write “DELETE” into the textbox in the pop-up modal.

6. Click the "delete" button, which will be clickable after entering the text.

Expected result The system permanently deletes the course information and all

associated portfolio data. A success message is displayed after deleting.

Date / Result 01/05/2025 - Pass

48

Test ID: FT042 Category: Portfolio Severity: Critical

Objective Verify that an instructor can delete a document permanently.

Steps 1. An instructor has already created the document to remove.

2. Log in as an instructor.

3. Navigate to the portfolio main page.

4. Click the course from which the document will be removed.

5. Click the “See Portfolio” button.

6. Click the “Delete” button to remove from the action tab in the

document row.

Expected result The system permanently deletes the document information. A success

message is displayed after deleting.

Date / Result 01/05/2025 - Pass

Test ID: FT043 Category: Portfolio Severity: Moderate

Objective Verify that the system can successfully edit and update an existing

assignment in a syllabus in the database.

Steps 1. An instructor has already created a course with at least one type of

assignment.

2. Log in as an instructor.

3. Navigate to the main page of the selected course.

4. Click the “Edit” button in the course summary.

5. Fill all the desired fields with valid data (date, no. of assignment) in

the desired type of assignment.

6. Click the “Save” button.

Expected result The system successfully updates the assignment information and shows

the changed information in the summary section. A success message is

displayed after saving.

Date / Result 01/05/2025 - Pass

49

Test ID: FT044 Category: Portfolio Severity: Moderate

Objective Verify that the system can display an existing document in LaTeX format

on the “Edit Exam” page.

Steps 1. There is at least one .tex type of assignment in the course portfolio.

2. Log in as an instructor.

2. Navigate to the portfolio main page.

3. Click the course where the assignment will be opened.

4. Click the “See Portfolio” button.

5. Click the “Edit” button from the action tab in the document row to

open.

Expected result The system successfully navigates the user to the “Edit Exam” section.

The LaTeX content is correctly rendered and displayed.

Date / Result 01/05/2025 - Obsolete

Notes This feature was already in the exam creation module, so it was moved

from this module as a design choice.

Test ID: FT045 Category: Portfolio Severity: Minor

Objective Verify that the system can successfully filter the portfolio according to

the section.

Steps 1. An instructor has already created a course with at least one section.

2. Log in as an instructor.

3. Navigate to the portfolio main page.

4. Click the “All Sections” button.

5. Choose the desired section among the selections.

Expected result The system successfully filters the portfolio page according to the

section. A filtered page is displayed.

Date / Result 01/05/2025 - Pass

50

5.2 Non-Functional Test Cases

Test ID: NFT001 Category Usability Severity Moderate

Objective Verify that the UI of the software is self-explanatory so that users are

not overwhelmed with excessive amounts of content at once.

Steps 1. Create sample user groups.

2. Prepare appropriate demo sessions for each group and observe

their usage behaviors.

3. Ensure they refer to the user manual and ask questions about the

software.

4. Evaluate the outputs.

Expected result The user manual and UI should be adequate for users to perform the

core actions of the software. A moderate number of questions is

expected to be asked.

Date / Result 01/05/2025 / Pass

Test ID: NFT002 Category Maintainability Severity Critical

Objective Verify that the code base is self-documented, non-redundant, and

embracing new features.

Steps 1. Check for redundant code segments.

2. Check for code segments that do not conform to best practices.

3. Ask each developer to cross-check the code blocks they have not

developed. Ask them if those code segments are self-documenting.

4. Determine risky parts that may block the development in the future.

Expected result There are no risky code segments, or at least not a few.

Date / Result 01/05/2025 / Pass

51

Test ID: NFT003 Category Reliability Severity Critical

Objective Verify that the software is invulnerable to single-point failure.

Steps 1. Shut down services one at a time to identify possible single-point

failures.

2. Observe the outcomes on the client side.

Expected result No or little impact on the client side should be observed. Failures must

not cause any sensitive data to leak.

Date / Result 01/05/2025 / Pass

Test ID: NFT004 Category: Security Severity: Critical

Objective Verify that only authorized services can communicate with each other

using Service-to-Service Authentication (S2S Auth).

Steps 1. Identify a service that requires S2S authentication (e.g., Objection

Service).

2. From an unauthorized service (e.g., Question Service), attempt to

send an authenticated request to Objection Service.

3. Observe the system’s response.

4. Repeat the request with a valid S2S authentication token and

observe the response.

Expected result The unauthorized service receives a 401 Unauthorized or 403

Forbidden error with a message like "Service authentication failed."

Date / Result 01/05/2025 / Pass

Test ID: NFT005 Category: Security Severity: Critical

52

Objective Verify that users can only access endpoints permitted by their role,

ensuring Role-Based Access Control (RBAC) enforcement through

JWT authentication.

Steps 1. Log in as an Institution role user and obtain a valid JWT token.

2. Make a POST request to the Instructor Register endpoint

(/api/institution/register-instructors) using the Institution JWT token.

3. Observe the response and confirm that the request is successful.

4. Log in as an Instructor role user and obtain a valid JWT token.

5. Attempt to make the same POST request to

/api/institution/register-instructors using the Instructor JWT token.

Expected result The Instructor role user receives a 403 Forbidden or 401

Unauthorized response with a message like "Permission denied."

Date / Result 01/05/2025 / Pass

6. Maintenance Plan and Details
Evalio’s maintenance strategy focuses on proactive monitoring, incremental scaling,

and controlled change management so that the platform stays reliable while new

features are introduced.

6.1. Monitoring & Health Checks

Layer Tool / Mechanism What We Watch Frequency

Micro-services Consul health probes (`/health`) 200 OK & latency 10s

Container runtime Docker events + log forwarding Crash-loops, restarts Real-time

EC2 nodes (prod) AWS CloudWatch metrics CPU, RAM, disk -

GCS bucket Object change notifications Failed uploads Real-time

Table 1: Monitoring & Health Check table of Evalio

53

6.2. Scheduled Maintenance Tasks

We plan to implement a structured maintenance routine that includes automated and

manual tasks. These tasks aim to ensure system stability, security, and long-term

performance as Evalio scales. Critical operations such as JWT key rotation and

database backups are handled via cron jobs or cloud functions. Manual verification

steps, like backup restoration, will also be part of the process.

Task Frequency Automated? Owner

Rotate JWT signing keys Monthly Yes (cron job) DevOps

Backup PostgreSQL Daily @ 02:00 UTC Yes DBA

Verify backup restore on staging Weekly Manual DBA

Re-index frequently accessed tables Monthly Yes (Alembic task) DBA

Table 2: Planned Maintenance Tasks for Evalio

6.3. Scaling & Capacity Planning

Since our architecture is already based on microservices, we plan to incorporate a

container orchestration tool such as Kubernetes in the future to enhance scalability

and reliability. Within this scope, we aim to implement the following improvements:

●​ Vertical Scaling: EC2 instances currently start at t3.medium. We plan to

define Auto Scaling Group (ASG) policies that will scale up to t3.large when

average CPU usage exceeds 70% for more than 10 minutes.

●​ Horizontal Scaling: All services are stateless and can be scaled out by

increasing replica counts in docker-compose-infra.yaml. We plan to migrate

this infrastructure to more dynamic and managed scaling as part of our

roadmap.

●​ Auto Scaling: We intend to introduce auto-scaling policies based on real-time

load metrics, ensuring that services can elastically respond to usage spikes

without manual intervention [5].

54

7. Other Project Elements
This section explores the various elements of the Evalio.

7.1. Consideration of Various Factors in Engineering Design

7.1.1 Constraints

7.1.1.1 Authentication & Data Access

Evalio enforces 2FA to enhance security and prevent exam leaks. This additional

layer of authentication is vital for protecting sensitive exam-related materials and

maintaining the system's confidentiality. Evalio also implements RBAC to provide

granular access to the system and data resources. Unauthorized entities can not

access the protected resources. For instance, only instructors can access the

question database, while teaching assistants can not view any questions.

7.1.1.2 Question Scanning

Evalio provides multiple ways of uploading questions to the system. Evalio allows

instructors to upload questions using the LaTeX format. Questions are stored with

various metadata in the database. In this way, questions can be edited more flexibly.

Another way to upload a question is to scan it and pass it to the LLM. In that way,

legacy questions can also be uploaded to the database.

7.1.1.3 Cloud Services & Containerization

Evalio is currently hosted on a cloud machine since establishing and maintaining a

server from scratch is not viable for our team. Cloud services are the current trend,

anyway. Evalio’s services are fully dockerized, so it is easy to deploy and scale a

complete application on a cloud machine, which is not a big deal.

7.1.1.4 Advertisement

Due to budget limitations and Evalio's target audience specificity, we advertise our

application to a small instructor group. For the initial development phase of the

application, this strategy did not overwhelm us with economic issues. Also, it allowed

us to get significant feedback about the core functionality of the project.

55

7.1.1.5 Time Management

Since Evalio is a capstone project, its development and deployment calendar are

limited by the academic calendar. We designed the application by considering the

continuous deployment principle. Instead of implementing the project as a whole, we

implemented it module by module. This way, we ensured that everything we had in

production worked fully. At the end, we implemented the project incrementally.

7.2. Ethics and Professional Responsibilities

First, Evalio was designed as a project to become an industry standard. So we must

provide a fair and inclusive environment to our users. So, in the first place, we

designed Evalio’s user interface in English to allow many users to use it. Even if

Evalio is a for-profit application, it is not intended to undermine academic integrity.

The primary purpose of the Evalio is to continually enhance the teaching and

examination procedure for academic staff and students.

7.3. Teamwork Details

7.3.1. Contributing and functioning effectively on the team to establish

goals, plan tasks, and meet objectives

As previously mentioned, our project was well-suited for a microservices architecture

due to its modular structure. Therefore, we chose to partition the work as much as

possible to maximize individual productivity, especially considering that we also

managed coursework from other classes. As a result, frequent in-person

collaboration was not always feasible.

To address this, we adopted the sprint methodology, meeting regularly to divide

tasks, track progress, discuss challenges, and conduct joint testing. At the end of

each sprint, we planned the functions for the upcoming sprint based on the project's

progress and requirements.

Additionally, we regularly gathered feedback from our supervisor to ensure alignment

with the project’s objectives. Periodic requirement checks were also a priority to

ensure all components remained on track and within scope.

56

7.3.2. Helping creating a collaborative and inclusive environment

We prioritized clear and professional communication to empower a supportive and

collaborative environment. Tasks were regularly assigned through Jira during our

weekly meetings. Once a task was assigned, the sprint leader consulted the

designated team member to ensure they were comfortable with the scope and

difficulty of the task, thereby avoiding potential overwork. Additionally, we ensured

that if any member required assistance, other teammates were readily available to

support them.

We utilized Zoom, WhatsApp, Gmail, and Jira to maintain an effective and seamless

communication process. In cases of urgency, video calls enabled screen sharing and

real-time problem-solving, greatly facilitating mutual assistance.

Furthermore, we recognized the importance of strong social bonds within the team.

To strengthen these connections, we organized several in-person gatherings, such

as team dinners and extracurricular activities, to build camaraderie beyond the

project's scope.

7.3.3. Taking lead role and sharing leadership on the team

Our team adopted a dynamic leadership approach, with roles rotating seamlessly

based on the project's needs. For instance, if the focus of a weekly meeting centered

on a particular module, the team member responsible for implementing that module

would assume leadership and guide the meeting accordingly.

One team member consistently shared their screen and managed task assignments

through the Jira board, effectively taking on the project management responsibilities.

We also held regular merge meetings to integrate all feature branches into the main

branch. These sessions were conducted collaboratively to resolve any potential

merge conflicts and to review the completed work at the end of each sprint.

During these merge meetings, one team member would take the lead by sharing

their screen and managing the session from a single computer to maintain

consistency and control throughout the process.

57

7.3.4. Meeting objectives

This section provides an overview of how each core functional module in Evalio has

met the objectives set in the Analysis, and all essential modules have been

implemented, integrated, and tested. Below is a module-by-module summary of

functionalities and the level of completion.

Authentication & Authorization:

Planned Objectives

●​ User registration and login for different types of users.

●​ Role-based access control.

●​ Secure session management.

Achievements

●​ Full implementation of registration and login flows using email verification.

●​ JWT-based session management and secure access tokens are in place.

●​ Role separation is strictly enforced.

●​ All test cases related to authentication passed successfully.

Exam & Question Creation Module:

Planned Objectives

●​ Instructors can create and manage exam questions.

●​ Exams can be created by selecting questions.

●​ Versioning and editing of questions.

Achievements

●​ Instructors can create, edit, and delete questions.

●​ Exams can be assembled by selecting from existing questions.

●​ Drag-and-drop reordering of questions in exams is supported.

●​ Forking the versions of questions and redesigning are supported.

●​ All critical exam features are complete; minor UI arrangements may be

needed (according to design choice).

58

Objection session scheduling & Slot Booking Module:

Planned Objectives

●​ TAs and Instructors can create objection sessions.

●​ TAs and Instructors define available time slots.

●​ Students can book slots.

●​ Prevent overlaps during slot booking.

Achievements

●​ Objection sessions can be scheduled per exam.

●​ Fully functional slot system.

●​ Booking requests are validated for conflicts and real-time access.

●​ Peer-to-peer connection is established only in booked sessions.

Courses & Portfolio Module:

Planned Objectives

●​ Instructors can create courses.

●​ Instructors can upload documents.

●​ Course materials can be uploaded and viewed securely.

Achievements

●​ Instructors can create and upload courses for specific semesters.

●​ Instructors can upload and manage documents.

●​ By using uploaded materials, the end-term report can be created.

●​ Unauthorized material access is blocked and tested successfully.

●​ Only TAs with permissions can access the Instructor’s portfolio.

These developments align directly with the milestones and functional targets in the

Analysis and Requirements Report.

In addition to functional requirements, the Evalio platform has successfully met all

key ethics and professional responsibility objectives outlined in our initial project

plan. Usability and accessibility design guarantee that the system maintains a clean,

59

user-friendly interface and workflow and can be easily used by instructors and TAs.

Instructor-specific portfolio views and institution-based course content are managed

with strict control so TAs can only access course materials under the instructor's

supervision. All modules from exam preparation to portfolio management and

objection session coordination are hierarchically structured, with privacy and

role-based data access importance. Sensitive academic data storage and handling

are done with subject-controlled, secure mechanisms. Furthermore, Evalio includes

all modules needed to assist instructors end-to-end in the exam preparation and

documentation processes, including question creation, complete exam execution,

objection session configuration, and preparing an end-term portfolio. These

capabilities have been iteratively developed based on direct feedback from key

users, so the platform closely aligns with their real-world needs.

7.4 New Knowledge Acquired and Applied

During the development of Evalio, we encountered several technologies and

architectural patterns for the first time and had to learn and apply them effectively

throughout the project. Although we had prior experience in web development, this

was our first time building a microservice-based system with containerized services,

centralized authentication, and distributed data management.

On the infrastructure side, we gained practical knowledge about Docker, Docker

Compose, and how to build and deploy services in isolated containers. The use of

Consul for service discovery and health checks was entirely new to us, and we

learned how it helps ensure the resilience of a distributed system.

In addition, we became familiar with designing JWT-based role enforcement,

handling token refresh logic on the frontend, and implementing RBAC (Role-Based

Access Control) at both API and UI levels.

Beyond the technical scope, we also improved our project management and team

collaboration skills. We followed an agile-inspired sprint structure and used Jira to

plan, assign, and track tasks. This helped us manage a large codebase across

multiple contributors and keep the team aligned throughout the development

lifecycle.

60

Most of this knowledge was gained through hands-on debugging, following tutorials,

reading official documentation, consulting with our team and consulting with our

advisor. Overall, this project has strengthened both our technical and collaborative

understanding of building and managing modern cloud-native applications.

8. Conclusion and Future Work

8.1 Conclusion

Evalio is structured as a safe, modular, microservices-based system. Its core

functionality of question building, LaTeX rendering for exams, booking objection

sessions, and managing portfolios is written as independent, scalable services. The

system uses Docker, access control through JWT, Redis caches, and cloud storage

to achieve performance, safety, and supportability. The architecture is future-proofed

after all essential modules have been tested correctly.

On the user requirements side, Evalio prioritizes usability, privacy, and academic

integrity. Role-based UI allows instructors, TAs, and institutions to operate in a

well-defined scope. Real academic workflows, such as building question banks,

managing objections, and report generation, are all fully supported. The system

reflects user feedback and includes helpful tools augmenting teaching, testing, and

collaboration.

8.2 Future Work

Although Evalio successfully passed most security-related non-functional

requirements, it failed specific attack vector tests (e.g., XSS, SQL Injection).

Therefore, a critical direction for future work is to strengthen security further. This

includes sanitizing input completely, applying HTTP security headers, and regularly

conducting audits so that the system can stay resilient against new attacks.

From a functional standpoint, the platform can be enhanced by enabling

instructor-TA interactions on assignments. For example, when a teaching assistant

uploads a quiz or homework assignment, the instructor should be able to provide

61

direct feedback, request revisions, or post contextual comments on the file. This

feature would encourage collaborative content refinement and quality assurance.

As one part of making student access continue without needing another server or

platform, instructors could optionally share certain documents (e.g., lecture notes or

assignment files) with students via secure, token-based links, similar to the objection

module’s access flow. This would provide controlled yet direct access to educational

material.

Lastly, a notification system can be integrated to inform users of relevant actions

(e.g., objection booking updates, portfolio submissions, or shared document access),

which provide overall responsiveness and communication within the system.

​

62

9. User Manual

9.1 General

9.1.1 Landing Page

Figure 24: Landing Page

63

The landing page of Evalio provides an informative and straightforward interface for

users. It shows the main capabilities of the application, how users can contact us,

and the possible subscription options. Users can go to the developers page, login

page, and registration request page from the navigation bar by clicking the

respective buttons.

9.1.2 Login

Figure 25: Login Page

The login page asks for the user's username and password. After entering the

correct credentials, the user is authorized. Otherwise, the page shows a warning

message.

64

9.1.3 Registration Request

Figure 26: Registration Request Page

Figure 27: Registration Request Response

65

In the registration request page, institutions can send a registration request to Evalio

by filling in the necessary information and clicking the “Send Your Request” button.

When a request is submitted, the page shows an information message.

9.2 Admin Management

9.3.1 Admin Page

Figure 28: Admin Management Page, List Instructor Tab

Evalio admins can see the list of existing institutions with their IDs, names, emails,

and last login dates. All institutions can be viewed in a paginated table. Pagination is

controlled from the arrows at the bottom of the table.

66

Figure 29: Admin Management Page, Add Instructor Tab

Evalio admins can see the list of registration requests. The institution is officially

registered if the admin clicks the “Approve” button. The request is rejected if the

admin clicks the “Reject” button. All requests can be viewed in a paginated table.

Pagination is controlled from the arrows at the bottom of the table.

Figure 30: Admin Management Page, Add Tag Tab

67

Evalio admins can add tags for questions. Admin enters the category's name and

hits the “Add Tag” button. A new tag is listed in the Existing Tags table if a tag can be

added. Otherwise, an error message is shown. Admins can also list the existing tags

in the Existing Tags table in a paginated fashion.

9.3 Profile Pages

9.3.1 Institution Profile Page

Figure 31: Institution Profile Page, Instruction List Tab

68

Figure 32: Institution Profile Page, Teaching Assistant List Tab

Figure 33: Institution Profile Page, Course List Tab

Institutions can manage their profile in the Institution profile page. On the left side,

several stats about institutions are listed. Under the information, institutions can add

new members by clicking the “Add Members” button and add new courses by

clicking the “Add Course” button. Institutions can list, block, and delete their

69

instructors and teaching assistants from “Instruction List” and “Teaching Assistant

List”, respectively. Institutions can list their courses under the “Course List” tab.

Figure 34: Institution Profile Page, Add Single Use Modal

Figure 35: Institution Profile Page, Upload CSV Modal

70

After clicking the “Add Members” button, a modal pops up. Institutions can add either

a single user via the “Single User” tab or add bulk via “Upload CSV”. The Institution

fills in the necessary information for single-user addition and clicks the “Add User”

button. The Institution prepares a CSV file containing information on multiple users

for bulk ads. Then uploads it to the system.

Figure 36: Institution Profile Page, Add Course Modal

After clicking the “Add Course” button, a modal pops up. The institution fills in the

necessary course information. Then click the “Add Course” button.

71

9.3.2 Instructor Profile Page

Figure 37: Instructor Profile Page, Objection List Tab

Figure 38: Instructor Profile Page, Exam List Tab

72

Figure 39: Instructor Profile Page, Questions List Tab

Figure 40: Instructor Profile Page, Forked Questions List Tab

73

Figure 41: Instructor Profile Page, Favorites Question List Tab

In the Instructor Profile page, instructors can see information about themselves. On

the left side of the page, the Instructor can see information about them and their

institution. Under the “Actions” card, they can create objections, exams, and

questions by clicking the “Create Objection Session”, “Create New Exam”, and

“Create New Question” buttons, respectively. On the right side of the page,

instructors can see the list of objections, exams, questions, forked questions, and

favorited questions from “Created Objections”, “Created Exams”, “Created

Questions”, “Forked Questions”, and “Favorited Questions” tabs, respectively.

74

9.3.3 Teaching Assistant Profile Page

Figure 42: Teaching Assistant Profile Page, Objection List Tab

Figure 43: Teaching Assistant Profile Page, Assigned Exams List Tab

75

In the Teaching Assistant Profile page, TAs can see information about themselves.

On the left side of the page, the TA can see information about them and their

institution. Under the “Actions” card, they can create objections via the “Create

Objection Sessions” button. On the right side of the page, teachers can see the list of

objections and assigned exams from the “Created Slots” and “Assigned Exams”

tabs, respectively.

9.4 Question & Exam Module

9.4.1 List Questions

Figure 44: Question List Page

The Question List page displays all available questions in a table format. Users can

search for questions using the search bar and reset filters with the "Reset" button.

Each question is listed with its title, difficulty level, tags, average success rate, and

institution. On the right side, users can take actions such as adding the question to

an exam, viewing its versions, forking it for edits, or checking statistics. Difficulty

levels are shown with colored labels. Pagination controls at the bottom let users

navigate through multiple pages of questions.

76

9.4.2 Create Question

Figure 45: Create Question Page

The Create Question page allows users to add new questions to the system. On the

left, users fill in the question's title, select its difficulty level, specify the required

space in lines, assign relevant tags, and optionally write a description. There's also a

checkbox to mark the question as private.

At the bottom, users can export or import LaTeX files, convert an image to LaTeX, or

open a built-in LaTeX editor to write the question content. Once all fields are

completed, clicking Add Question saves it to the database. The Reset button clears

the form, and Cancel exits the page without saving. If available, a preview area

displays the LaTeX content converted to PDF on the right side.

77

9.4.3 Show Question Details

Figure 46: Show Question Details Page

The Show Question Details page displays all information about a specific question.

On the left, users can see the question’s title, difficulty level, visibility status, required

space in lines, average success rate, description, and associated tags. Below,

several action buttons allow users to edit the question, view its parent version, fork it,

check statistics, add it to an exam, or export it as a PDF or LaTeX file. On the right

side, the LaTeX-rendered version of the question is shown in a PDF viewer, allowing

users to preview exactly how it will appear in exams or documents.

78

9.4.4 Edit Question

Figure 47: Update Question Page - Question Data

Figure 48: Update Question Page - LaTeX Editor

The Edit Question page lets users modify all details of an existing question. Users

can update the title, difficulty, required space, tags, and description. If the description

exceeds the 500-character limit, an error is shown. On the right, the LaTeX preview

shows how the question will appear in formatted form. By clicking Edit on the LaTeX

Editor, users can directly modify the LaTeX code in a built-in editor. This allows for

79

precise formatting and math notation. Any changes made are instantly reflected in

the live preview. Once edits are complete, users can click Update Question to save

changes.

9.4.5 Create New Exam

Figure 49: Create New Exam

The Create Exam page is used to set up a new exam. Users must enter the exam

title, minute duration, exam date, the related course, and a brief description. All fields

are required for the exam to be created properly. Once the form is filled out, clicking

the “Create” button finalizes the setup and registers the exam in the system.

80

9.4.6 Add Question To Selected Exam

Figure 50: Add Question to Exam Pop-Up

When you click “Add to Exam” for a question in the Question List, a pop-up allows

you to assign that question to an existing exam. From the dropdown menu, select

the target exam by its name. Once selected, the question will be added to that

exam’s question pool. This feature helps you quickly build exams by selecting and

inserting questions from the central repository.

81

9.4.7 Show Exam Details

Figure 51: Exam Details Page

The Exam Details page shows all the information related to a selected exam. On the

left, it displays the exam name, course, duration, status (e.g., draft), description, and

any instructions provided. Below, it lists all the questions added to the exam along

with their number, title, tags, assigned grade, and average success rate. Users can

search for and add more questions using the button above the list. At the bottom are

options to edit or delete the exam and export it as a LaTeX file or a formatted PDF.

On the right, a live PDF preview shows how the exam will appear when printed or

shared.

82

9.4.8 Edit Exam Details

Figure 52: Edit Exam Details Page

The Edit Exam Details page lets users modify the content and structure of an

existing exam. Users can update the exam name, related course, duration, status,

description, and instructions. The list of added questions is shown below, where

users can adjust assigned grades or remove questions entirely.

The order of questions can be rearranged easily using drag-and-drop functionality,

allowing instructors to organize the exam flow as desired. Additionally, selecting a

question in the list opens it for inline editing. This editing affects only the version of

the question within the exam—it does not alter the original question in the central

question bank. After making changes, users can click Save Changes to apply them

or Cancel to discard edits. On the right side, a live preview shows the updated PDF

version of the exam.

83

9.5 Objection Module

9.5.1 Creating an Objection Session (TA/Instructor)

Figure 53: Profile Page of TA/Instructor with the “Created Slots” tab active

Log in as a TA or Instructor. On the Profile Page, locate the Actions section in the

information card on the left side. Click the "Create Objection Session" button. You

will be redirected to the session creation page upon clicking the button.

84

Figure 54: Create Objection Session Page

Complete the form on the "Create an Objection Session" page by providing all the

required information. The Slot Capacity field specifies the maximum number of

students who can reserve a single time slot. You may select either a single date or

multiple dates for scheduling objection sessions. To add a date, click the "Add

Another Day" button.

The Time Picker allows you to define the session duration precisely. For instance, if

each slot is 30 minutes long, setting the start and end times at either xx:00 or xx:30

is recommended to avoid scheduling errors.

85

9.5.2 Managing the Objection Session (TA/Instructor)

Figure 55: Objection Session Page

After clicking the "CREATE" button, you will be redirected to the Objection Session

page, where you can copy the session link, enable or disable slots, and view

reservations. To copy the session link, click the "Reveal Session Link" button and

copy the displayed link. You can then share it with your students via email or another

preferred communication method.

If the session includes multiple days, you can navigate between them using the

arrow buttons at the top of the table to change the displayed date. The page also

displays session details such as the assigned classroom(s), the creator of the

session, slot capacity, and current session status.

86

Figure 56: Objection Session Page

By clicking the "Terminate Session" button, the session will be simultaneously

terminated for all users. If you click on an available slot cell, you can disable it.

Similarly, if you click on a disabled cell, you can enable it.

Figure 57: Objection Session Page

87

Figure 58: Objection Session Page with reservations pop-up

If you click on a cell containing at least one reservation, you can view the

corresponding reservations for that particular time slot. This feature is handy during

the physical session, allowing you to verify which students have made reservations.

Figure 59: Terminated Objection Session Page

88

Once you click the "Terminate Session" button, the table will change color to indicate

that the session has been closed, and no further modifications can be made. The

page becomes read-only for instructors and TAs; however, they can still view existing

reservations by clicking on the slot cells.

9.5.3 Making Objection Session Reservations (Student)

Figure 60: Enter-Email Page (student view)

Once your instructor or TA shares the objection session link with you, you can

access the system and reserve a slot for your objection session. Enter your email

address and click the "Continue" button to proceed.

89

Figure 61: Objection Session Page (student view)

After entering your email, you will be directed to the Objection Session page. On this

page, you can view disabled slot cells, available slots, their remaining capacity, and

fully booked slots. To make a reservation, simply click on any available slot cell.

Figure 62: Objection Session Page (student view)

90

Once you make a reservation, your selected slot cell will turn green, indicating a

successful booking. You cannot select another slot unless you cancel your current

reservation. To do so, simply click on your reserved cell and choose the option to

cancel your reservation.

Figure 63: Objection Session Page (student view) with Cancel Reservation Pop-up

You can reserve any other available slot once you click the "Cancel Reservation"

button. Please note that you can have at most one active reservation at anytime.

91

9.6 Portfolio Module

9.6.1 Courses and Portfolio Page

Figure 64: Image of Courses and Portfolio Page

The Course and Portfolio page is the Portfolio Service's entry point and can be

accessed via the “Courses and Portfolio” item in the top navigation bar. The user

(“Instructor or TA”) can view their previously added courses on this page.

The top section (“Current Courses”) displays the courses the user is actively

teaching this semester. The bottom section (“All Courses”) lists all courses the user

is related to, including past and future semesters. For example, CS421-2025 Spring

appears in both sections since it is currently active, while CS421-2023 Fall only

appears in the “All Courses” section, indicating that it is not currently active.

Users can perform several actions from this page. Clicking the Add New Course

button opens the form to register a new course, while the Filter button allows courses

to be filtered by semester and year. The most crucial action is entering the course’s

detail page using the Detail button, which redirects to the Course Summary Page.

92

Additionally, the Edit button allows updating course metadata, and the Delete icon

removes the course from the user’s list.

Each of these interactions is described in detail in the following figures.

9.6.2 Add New Course Modal

Figure 65: Image of Add New Course Modal

When users click the Add New Course button on the Courses and Portfolio page,

this modal appears. It allows the useThis modal appears when users click the Add

New Course button on the Courses and Portfolio pagesemester, and number of

sections. The “Set Course Status” field determines whether the course is currently

active (Yes) or not (No). Once all fields are filled, clicking the Add button registers the

course under the user’s portfolio, while Cancel closes the modal without saving

changes.

93

9.6.3 Filter Modal

Figure 66: Image of Filter Modal

This modal appears when the user clicks the Filter button on the Courses and

Portfolio page. It allows users to narrow the displayed course list by selecting a

specific semester and/or course name. The dropdowns dynamically fetch and list

only the active semesters and courses associated with the current user. Once a filter

is applied, the course lists below are updated accordingly. The Cancel button closes

the modal without applying any changes, while the Filter button triggers the filtering

operation.

94

9.6.4 Course Summary Page

Figure 67: Image of Course Summary Page

This page is displayed when the user clicks the Detail button on a course from the

Courses and Portfolio page. It provides a structured summary of the selected course

and its portfolio items.

At the top, the breadcrumb trail allows users to return to the previous course list

page. The heading section displays the course name and semester (e.g., Network -

Spring 2025). Just beside the title are three primary buttons:

●​ Assign TA / Show Assigned TAs: used to view or update the TAs

responsible for the course.

●​ Upload / View Documents: navigates to the document upload interface for

portfolio items.

●​ Export Portfolio: triggers the download of a compiled PDF portfolio for

accreditation or archival.

95

The first card on the page shows a Course Summary, including the semester,

instructor, assigned TAs, number of sections, active status, course description, and

all portfolio types registered for that course. This section can be toggled using the

eye icon in the card’s top-right corner to show or hide details. Below, the page is split

into two main sections:

●​ The left column (Portfolio Item – Assignment) lists structured

assignment-related portfolio types, such as “Examination” or “Quiz”. Within

each, assignments like “Midterm 1” or “Quiz 5” are displayed with details

including assigned date, average score, and number of uploaded files.

●​ The right column (Portfolio Item – Other) includes non-assignment types such

as “Attendance” and “Konuşanlar”, organized similarly.

Each item in these tables is clickable. Clicking on an item opens the document

management view specific to that item, with uploaded files and details.

At the top of the portfolio section, there are two action buttons:

●​ Add Portfolio Item: opens a modal to create a new portfolio item under an

existing type.

●​ Edit Portfolio Item: allows modifying or deleting existing portfolio item details

if necessary.

The overall layout is designed to give instructors and TAs a quick, editable overview

of all portfolio components related to a specific course.

96

9.6.5 Assign TA modal

Figure 68: Image of Assign TA Modal

This modal appears on the Course Summary page when the user clicks the Assign

TA / Show Assigned TAs button. Instructors can assign or unassign teaching

assistants (TAs) to the selected course. The user can search for available TAs by

name or email using the input field at the top. Each listed TA has a checkbox,

indicating whether they are currently assigned to the course. Ticking or unticking the

boxes updates the TA list. Pressing Assign saves the selected TAs, while Cancel

closes the modal without applying changes.

97

9.6.6 Add Portfolio Item Modal

Figure 69: Image of Add Portfolio Item Modal

This modal appears when the user clicks the Add Portfolio Item button on the Course

Summary page. It allows instructors or teaching assistants to add a new item to the

course’s portfolio.

Users first select a Main Item (e.g., Examination, Quiz, Attendance) from the

dropdown. Then, they provide a Portfolio Item Name (such as “Midterm 2” or

“Homework 4”), a brief Description, and specify whether the item is of type

Assignment or Other.

If the item is an assignment, users can also optionally enter a Date Assigned and an

Average Score field to track performance data. After filling in the form, clicking Add

saves the item into the course portfolio, while Cancel dismisses the modal without

saving.

98

9.6.7 Portfolio Files Page

Figure 70: Portfolio Files Page

The Portfolio Files Page displays all uploaded portfolio files for a specific course,

organized by their Main Type (e.g., Project, Quiz, Examination) and nested Type

(e.g., Project 1, Midterm 1). This view is accessible from the Course Summary Page

by clicking any portfolio item name.

A breadcrumb trail at the top of the page helps users navigate back to the course

context. Directly below, a search bar enables filtering by portfolio name, primary

type, or specific type.

Each portfolio item is expandable. When expanded, it reveals a table that lists the

following columns:

●​ Title: A descriptive title for the uploaded file.

●​ File: A clickable file name that opens the uploaded document.

●​ Description: A brief explanation of the file content or context.

●​ Main Type: The general category of the portfolio item (e.g., Project).

●​ Type: The subgroup under which the item is categorized (e.g., Project 1).

●​ Actions: Edit and delete icons that allow users to update metadata or remove

the file.

99

Instructors or TAs can click the Add File button in the top-right corner to add a new

file to the portfolio. This opens a modal where the user provides the file, selects the

main and specific types, and optionally adds a description. Once saved, the new file

will appear under the appropriate group.

Files can be updated or deleted using the corresponding action icons in the table.

Any changes made are instantly reflected in the grouped view. This page is designed

to help educators maintain an organized, trackable repository of student submissions

and key course documents.

100

9.6.8 Portfolios Page/ Add File Modal

Figure 71: Portfolios Page/ Add File Modal

This modal is opened when users click the Add File button on the Portfolios Page. It

allows instructors or TAs to upload a PDF document under a selected main and sub

portfolio type. Users provide a title, optionally add a description and section info, and

mark the file as active or not. Once submitted via the Add button, the file is listed in

the appropriate group. Clicking Cancel closes the modal without saving.

101

9.6.9 Portfolios Page/ Add Portfolio Type Modal

Figure 72: Portfolios Page: Add Portfolio Type Modal

“Add Portfolio Type Modal” appears when the “+” button at the bottom of a portfolio

type list is clicked after expanding a Main Type or Type section. It allows instructors

or TAs to define a new portfolio item category (e.g., “Homework 4” or “Midterm 2”) by

entering its name, description, and selecting whether it’s an assignment or other

type. Optionally, the assigned date and average score can be added. Clicking Add

creates the new portfolio type, while Cancel closes the modal without changes.

102

9.6.10 Portfolios Page/ Add Portfolio Type Modal

Figure 73: Portfolios Page: Add Portfolio

When the delete icon is clicked for a portfolio file, this confirmation dialog appears.

Clicking OK permanently deletes the file, while Cancel aborts the action.

103

9.6.11 Portfolio Creation Page

Figure 74: Portfolio Creation Page

The Portfolio Creation Page is used to generate a complete course portfolio in PDF

format. On the left side, an automatically generated LaTeX summary is provided,

which can be edited manually if needed. As users make changes, the compiled PDF

version is rendered on the right side for real-time preview.

104

Below the editor, all uploaded documents are listed in the All Documents panel on

the left. Clicking on any document and then pressing the Save button adds it to the

Selected Documents panel on the right. These selected files will be included in the

final output.

When the Export button is clicked, the manually edited LaTeX summary and the

selected portfolio files are merged and downloaded together as a single,

comprehensive PDF portfolio. This allows instructors and TAs to create a

ready-to-submit report for accreditation or archiving purposes.

105

10. Glossary

ABET / MÜDEK: Accreditation organizations that assess the quality of engineering

programs. Evalio supports generating reports that are aligned with their standards.

Accreditation Reports: Reports generated to demonstrate compliance with

educational standards like ABET and MÜDEK.

Admin: The highest-privileged system user responsible for approving institutions

and overseeing platform-wide data.

API Gateway: A central entry point that routes and manages client requests to

backend microservices.

Assignment Component: A grading item (e.g., Quiz, Homework) within a course’s

evaluation structure.

Authentication Service: A microservice responsible for verifying user credentials

and enforcing RBAC.

Auto Scaling: A system mechanism that adjusts resources automatically based on

traffic or load.

Cloud Storage (AWS S3): A cloud-based storage for storing documents and files

externally, especially in the Portfolio module.

Course Portfolio: A structured archive of course materials such as exams,

assignments, and attendance records.

Docker: A containerization platform used to deploy Evalio’s microservices

consistently across environments.

Exam Builder: A module that allows instructors to create and manage exams by

selecting and organizing questions.

JWT (JSON Web Token): A token used for user authentication and securely

transmitting role and identity data.

106

LaTeX: A document formatting language used to write and render math-heavy exam

content professionally.

LaTeX Compiler: A tool integrated into Evalio to convert LaTeX content into

rendered PDF output.

Microservice: A self-contained, independently deployable service responsible for a

specific functionality.

Microservices Architecture: A design pattern in which different services handle

specific business logic independently.

Objection Session: A time window where students can review graded exams and

optionally raise objections.

PDF Export: The process of generating a downloadable PDF version of exams,

questions, or portfolios.

Portfolio Builder: A module that allows instructors to upload, organize, and export

course-related documents.

Portfolio Item: A document or academic artifact (e.g., exam paper, attendance

sheet) within a course portfolio.

Redis: An in-memory key-value store used for caching and real-time session

management.

Redis Cache: The caching layer of Evalio that improves performance by reducing

load on the database.

RBAC (Role-Based Access Control): A security mechanism that restricts access to

features based on user roles.

Service Discovery: The mechanism by which microservices locate each other

within the deployment environment.

Slot: A reservable time unit within an objection session for students.

107

TA (Teaching Assistant): A user role with permissions to manage objection

sessions and upload portfolio materials.

TexLive: The LaTeX distribution used to compile LaTeX source code into PDF

documents in Evalio.

Two-Factor Authentication (2FA): A security feature requiring a password and a

temporary verification code.

UML (Unified Modeling Language): A standard way of visually representing system

architecture and workflows.

User Roles: Predefined access levels in Evalio, such as Instructor, Teaching

Assistant, Institution, and Admin.

108

11. References
[1] Purdue University, “Creating Exams,” Purdue Innovative Learning, 2024. [Online].

Available:

https://www.purdue.edu/innovativelearning/teaching/module/creating-exams/.

[Accessed: Nov. 21, 2024].

[2] Sourab Pramanik, “Deploy your React App using Docker and Nginx,” DEV

Community, Nov. 27, 2023.

https://dev.to/sourabpramanik/deploy-your-react-app-using-docker-and-nginx-14lk

?utm_source=chatgpt.com (accessed May 01, 2025).

[3] “Consul Documentation | Consul | HashiCorp Developer.” Consul Documentation

| Consul | HashiCorp Developer, developer.hashicorp.com/consul/docs.

[4] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” May 2015,

doi: https://doi.org/10.17487/rfc7519.

[5] “Autoscaling Workloads.” Kubernetes.io,

kubernetes.io/docs/concepts/workloads/autoscaling/.

109

	TABLE OF CONTENTS
	1. Introduction
	2. Requirements Details
	2.1 Functional Requirements
	2.1.1 Questions Database and Exam Builder:​
	2.1.2 Analysis Tools
	2.1.3 Portfolio Builder
	2.1.4 Exam Result Viewing Session Organizer

	2.2 Nonfunctional Requirements
	2.2.1 User Friendliness / Usability
	2.2.2 Maintainability
	2.2.3 Reliability
	2.2.4 Security

	3. Final Architecture and Design Details
	3.1 Evalio Final Architecture
	3.2 Overview
	3.3 Subsystem Decomposition
	3.4 Hardware/Software Mapping
	3.5 Persistent Data Management
	3.6 Access Control and Security

	4. Development/Implementation Details
	4.1. Frontend
	4.1.1. Layout & Navigation
	4.1.2. Styling & Theme
	4.1.3. Deployment

	4.2. Backend
	4.2.1. Microservice Setup
	4.2.2. API Gateway
	
	
	
	4.2.3. Service Discovery & Health
	4.2.4 Security & Configuration
	4.2.5 Common Code Re-use
	4.2.6. Containerisation & Deployment

	4.3 Storage
	4.3.1. Database Tables
	4.3.1.1. User Service Tables
	4.3.1.2. Question & Exam Service Tables
	4.3.1.3. Slot Service Tables
	4.3.1.4. Portfolio Service Tables

	4.3.2. Google Cloud Storage

	5. Test Cases and Results
	5.1 Functional Test Cases
	5.1.1 Authentication Test Cases
	
	5.1.2 Question Database Test Cases
	5.1.3 LaTeX Service Test Cases
	
	5.1.4 Exam Creation Test Cases
	5.1.5 Slot Test Cases
	
	5.1.6 Portfolio Builder Test Cases

	5.2 Non-Functional Test Cases

	6. Maintenance Plan and Details
	6.1. Monitoring & Health Checks
	6.2. Scheduled Maintenance Tasks
	6.3. Scaling & Capacity Planning

	7. Other Project Elements
	7.1. Consideration of Various Factors in Engineering Design
	7.1.1 Constraints
	7.1.1.1 Authentication & Data Access
	7.1.1.2 Question Scanning
	7.1.1.3 Cloud Services & Containerization
	7.1.1.4 Advertisement
	7.1.1.5 Time Management

	7.2. Ethics and Professional Responsibilities
	7.3. Teamwork Details
	7.3.1. Contributing and functioning effectively on the team to establish goals, plan tasks, and meet objectives
	7.3.2. Helping creating a collaborative and inclusive environment
	7.3.3. Taking lead role and sharing leadership on the team
	7.3.4. Meeting objectives

	7.4 New Knowledge Acquired and Applied

	8. Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	
	
	9. User Manual
	9.1 General
	9.1.1 Landing Page
	9.1.2 Login
	9.1.3 Registration Request

	9.2 Admin Management
	9.3.1 Admin Page

	9.3 Profile Pages
	9.3.1 Institution Profile Page
	9.3.2 Instructor Profile Page
	9.3.3 Teaching Assistant Profile Page

	9.4 Question & Exam Module
	9.4.1 List Questions
	9.4.2 Create Question
	9.4.3 Show Question Details
	9.4.4 Edit Question
	
	9.4.5 Create New Exam
	
	9.4.6 Add Question To Selected Exam
	9.4.7 Show Exam Details
	9.4.8 Edit Exam Details

	9.5 Objection Module
	9.5.1 Creating an Objection Session (TA/Instructor)
	9.5.2 Managing the Objection Session (TA/Instructor)
	9.5.3 Making Objection Session Reservations (Student)

	9.6 Portfolio Module
	9.6.1 Courses and Portfolio Page
	9.6.2 Add New Course Modal
	9.6.3 Filter Modal
	9.6.4 Course Summary Page
	9.6.5 Assign TA modal
	9.6.6 Add Portfolio Item Modal
	9.6.7 Portfolio Files Page
	9.6.8 Portfolios Page/ Add File Modal
	9.6.9 Portfolios Page/ Add Portfolio Type Modal
	9.6.10 Portfolios Page/ Add Portfolio Type Modal
	9.6.11 Portfolio Creation Page

	
	10. Glossary
	11. References

